

 Install Instructions

Install Instructions

There are different ways to install MDIO:

	Install the latest release via pip or conda.

	Building package from source.

Note

We strongly recommend using a virtual environment venv or conda
to avoid potential conflicts with other Python packages.

Using pip and virtualenv

Install the 64-bit version of Python 3 from https://www.python.org.

Then we can create a venv and install MDIO.

$ python -m venv mdio-venv
$ mdio-venv/Scripts/activate
$ pip install -U multidimio

To check if installation was successful see checking installation.

You can also install some optional dependencies (extras) like this:

$ pip install multidimio[distributed]
$ pip install multidimio[cloud]
$ pip install multidimio[lossy]

distributed installs Dask [https://www.dask.org/] for parallel, distributed processing.

cloud installs fsspec [https://filesystem-spec.readthedocs.io/en/latest/] backed I/O libraries for AWS’ S3 [https://s3fs.readthedocs.io/],
Google’s GCS [https://gcsfs.readthedocs.io/], and Azure ABS [https://github.com/fsspec/adlfs].

lossy will install the ZFPY [https://computing.llnl.gov/projects/zfp] library for lossy chunk compression.

Using conda

MDIO can also be installed in a conda environment.

Note

MDIO is hosted in the conda-forge channel. Make sure to always provide the
-c conda-forge when running conda install or else it won’t be able to find
the package.

We first run the following to create and activate an environment:

$ conda create -n mdio-env
$ conda activate mdio-env

Then we can to install with conda:

$ conda install -c conda-forge multidimio

The above command will install MDIO into your conda environment.

Note

MDIO extras must be installed separately when using conda.

Checking Installation

After installing MDIO, run the following:

$ python -c "import mdio; print(mdio.__version__)"

You should see the version of MDIO printed to the screen.

Building from Source

All dependencies of MDIO are Python packages, so the build process is very simple.
To install from source, we need to clone the repo first and then install locally via pip.

$ git clone https://github.com/TGSAI/mdio-python.git
$ cd mdio-python
$ pip install .

We can also install the extras in a similar way, for example:

$ pip install .[cloud]

If you want an editable version of MDIO then we could install it with the command below.
This does allow you to make code changes on the fly.

$ pip install --editable .[cloud]

To check if installation was successful see checking installation.

 Get Started in 10 Minutes

Get Started in 10 Minutes

In this page we will be showing basic capabilities of MDIO.

For demonstration purposes, we will download the Teapot Dome open-source dataset. The dataset details and licensing can be found at the SEG Wiki [https://wiki.seg.org/wiki/Teapot_dome_3D_survey].

We are using the 3D seismic stack dataset named filt_mig.sgy.

The full link for the dataset (hosted on AWS): http://s3.amazonaws.com/teapot/filt_mig.sgy

Warning

For plotting, the notebook requires Matplotlib [https://matplotlib.org/] as a dependency. Please install it before executing using
pip install matplotlib or conda install matplotlib.

Downloading the SEG-Y Dataset

Let’s download this dataset to our working directory. It may take from a few seconds up to a couple minutes based on your internet connection speed. The file is 386 MB in size.

The dataset is irregularly shaped, however it is padded to a rectangle with zero (dead traces). We will see that later at the live mask plotting.

from os import path
from urllib.request import urlretrieve

url = "http://s3.amazonaws.com/teapot/filt_mig.sgy"
urlretrieve(url, "filt_mig.sgy")

('filt_mig.sgy', <http.client.HTTPMessage at 0x7feb830b3b50>)

Ingesting to MDIO Format

To do this, we can use the convenient SEG-Y to MDIO converter.

The inline and crossline values are located at bytes 181 and 185. Note that this is not SEG-Y standard.

from mdio import segy_to_mdio

segy_to_mdio(
 segy_path="filt_mig.sgy",
 mdio_path_or_buffer="filt_mig.mdio",
 index_bytes=(181, 185),
 index_names=("inline", "crossline"),
)

It only took a few seconds to ingest, since this is a very small file.

However, MDIO scales up to TB (that’s 1000 GB) sized volumes!

Opening the Ingested MDIO File

Let’s open the MDIO file with the MDIOReader.

We will also turn on return_metadata function to get the live trace mask and trace headers.

from mdio import MDIOReader

mdio = MDIOReader("filt_mig.mdio", return_metadata=True)

Querying Metadata

Now let’s look at the Textual Header by the convenient text_header attribute.

You will notice the text header is parsed as a list of strings that are 80 characters long.

mdio.text_header

['C 1 CLIENT: ROCKY MOUNTAIN OILFIELD TESTING CENTER ',
 'C 2 PROJECT: NAVAL PETROLEUM RESERVE #3 (TEAPOT DOME); NATRONA COUNTY, WYOMING ',
 'C 3 LINE: 3D ',
 'C 4 ',
 'C 5 THIS IS THE FILTERED POST STACK MIGRATION ',
 'C 6 ',
 'C 7 INLINE 1, XLINE 1: X COORDINATE: 788937 Y COORDINATE: 938845 ',
 'C 8 INLINE 1, XLINE 188: X COORDINATE: 809501 Y COORDINATE: 939333 ',
 'C 9 INLINE 188, XLINE 1: X COORDINATE: 788039 Y COORDINATE: 976674 ',
 'C10 INLINE NUMBER: MIN: 1 MAX: 345 TOTAL: 345 ',
 'C11 CROSSLINE NUMBER: MIN: 1 MAX: 188 TOTAL: 188 ',
 "C12 TOTAL NUMBER OF CDPS: 64860 BIN DIMENSION: 110' X 110' ",
 'C13 ',
 'C14 ',
 'C15 ',
 'C16 ',
 'C17 ',
 'C18 ',
 'C19 GENERAL SEGY INFORMATION ',
 'C20 RECORD LENGHT (MS): 3000 ',
 'C21 SAMPLE RATE (MS): 2.0 ',
 'C22 DATA FORMAT: 4 BYTE IBM FLOATING POINT ',
 'C23 BYTES 13- 16: CROSSLINE NUMBER (TRACE) ',
 'C24 BYTES 17- 20: INLINE NUMBER (LINE) ',
 'C25 BYTES 81- 84: CDP_X COORD ',
 'C26 BYTES 85- 88: CDP_Y COORD ',
 'C27 BYTES 181-184: INLINE NUMBER (LINE) ',
 'C28 BYTES 185-188: CROSSLINE NUMBER (TRACE) ',
 'C29 BYTES 189-192: CDP_X COORD ',
 'C30 BYTES 193-196: CDP_Y COORD ',
 'C31 ',
 'C32 ',
 'C33 ',
 'C34 ',
 'C35 ',
 'C36 Processed by: Excel Geophysical Services, Inc. ',
 'C37 8301 East Prentice Ave. Ste. 402 ',
 'C38 Englewood, Colorado 80111 ',
 'C39 (voice) 303.694.9629 (fax) 303.771.1646 ',
 'C40 END EBCDIC ']

MDIO parses the binary header into a Python dictionary.

We can easily query it by the binary_header attribute and see critical information about the original file.

Since we use segyio for parsing the SEG-Y, the field names conform to it.

mdio.binary_header

{'AmplitudeRecovery': 4,
 'AuxTraces': 0,
 'BinaryGainRecovery': 1,
 'CorrelatedTraces': 2,
 'EnsembleFold': 57,
 'ExtAuxTraces': 0,
 'ExtEnsembleFold': 0,
 'ExtSamples': 0,
 'ExtSamplesOriginal': 0,
 'ExtendedHeaders': 0,
 'Format': 1,
 'ImpulseSignalPolarity': 1,
 'Interval': 2000,
 'IntervalOriginal': 0,
 'JobID': 9999,
 'LineNumber': 9999,
 'MeasurementSystem': 2,
 'ReelNumber': 1,
 'SEGYRevision': 0,
 'SEGYRevisionMinor': 0,
 'Samples': 1501,
 'SamplesOriginal': 1501,
 'SortingCode': 4,
 'Sweep': 0,
 'SweepChannel': 0,
 'SweepFrequencyEnd': 0,
 'SweepFrequencyStart': 0,
 'SweepLength': 0,
 'SweepTaperEnd': 0,
 'SweepTaperStart': 0,
 'Taper': 0,
 'TraceFlag': 0,
 'Traces': 188,
 'VerticalSum': 1,
 'VibratoryPolarity': 0}

MDIO Grid, Dimensions, and Related Attributes

MDIO also has named dimensions, so we can see which dimension (axis) corresponds to which coordinate.

MDIO has an abstraction for an N-Dimensional grid. We can get the grid, and look at some of its properties.

mdio.grid.dim_names

('inline', 'crossline', 'sample')

mdio.grid.get_min("inline")

1

mdio.grid.get_max("crossline")

188

We can extract a dimension by name, and see its values.

The Dimension has name and coords that returns a string and a numpy array.

mdio.grid.select_dim("inline")

Dimension(coords=array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
 339, 340, 341, 342, 343, 344, 345]), name='inline')

Fetching Data and Plotting

Now we will demonstrate getting an inline from MDIO.

Because MDIO can hold various dimensionality of data, we have to first query the inline location.

Then we can use the queried index to get the data itself.

We will also plot the inline, for this we need the crossline and sample coordinates.

MDIO stores dataset statistics. We can use the standard deviation (std) value of the dataset to adjust the gain.

import matplotlib.pyplot as plt

crosslines = mdio.grid.select_dim("crossline").coords
times = mdio.grid.select_dim("sample").coords

std = mdio.stats["std"]

inline_index = int(mdio.coord_to_index(278, dimensions="inline"))
il_mask, il_headers, il_data = mdio[inline_index]

vmin, vmax = -2 * std, 2 * std
plt.pcolormesh(crosslines, times, il_data.T, vmin=vmin, vmax=vmax, cmap="gray_r")
plt.gca().invert_yaxis()
plt.title(f"Inline {278}")
plt.xlabel("crossline")
plt.ylabel("twt (ms)");

[image: ../_images/94229cbde9847e862f9e33ffcac4cc063a7880cb1e46a7d71581324eba95733e.png]

Let’s do the same with a time sample.

We already have crossline labels and standard deviation, so we don’t have to fetch it again.

We will display two-way-time at 1,000 ms.

inlines = mdio.grid.select_dim("inline").coords

twt_index = int(mdio.coord_to_index(1_000, dimensions="sample"))
z_mask, z_headers, z_data = mdio[:, :, twt_index]

vmin, vmax = -2 * std, 2 * std
plt.pcolormesh(inlines, crosslines, z_data.T, vmin=vmin, vmax=vmax, cmap="gray_r")
plt.title(f"Two-way-time at {1000}ms")
plt.xlabel("inline")
plt.ylabel("crossline");

[image: ../_images/7185ff6f69dca4ccee167acd1f5204f1a2cc5da2031f223584f8a6077301d6aa.png]

We can also overlay live mask with the time slice. However, in this example dataset is zero padded.

The live mask will always show True.

live_mask = mdio.live_mask[:]

plt.pcolormesh(inlines, crosslines, live_mask.T, vmin=0, vmax=1, alpha=0.5)
plt.pcolormesh(inlines, crosslines, z_data.T, vmin=vmin, vmax=vmax, cmap="gray_r", alpha=0.5)
plt.title(f"Two-way-time at {1000}ms")
plt.xlabel("inline")
plt.ylabel("crossline");

[image: ../_images/8d6ea032876cac5c82417121208dd5016630fbac13f56746b0b1c1fc5f366104.png]

Query Headers

We can query headers for the whole dataset very quickly because they are separated from the seismic wavefield.

Let’s get all the headers for byte 189 and 193 (X and Y in this dataset, non-standard).

Note that the header maps will still honor the geometry of the dataset!

mdio._headers[:]["189"]

array([[788937, 789047, 789157, ..., 809282, 809392, 809502],
 [788935, 789045, 789155, ..., 809279, 809389, 809499],
 [788932, 789042, 789152, ..., 809276, 809386, 809496],
 ...,
 [788044, 788154, 788264, ..., 808389, 808499, 808609],
 [788042, 788152, 788262, ..., 808386, 808496, 808606],
 [788039, 788149, 788259, ..., 808383, 808493, 808603]], dtype=int32)

mdio._headers[:]["193"]

array([[938846, 938848, 938851, ..., 939329, 939331, 939334],
 [938956, 938958, 938961, ..., 939439, 939441, 939444],
 [939066, 939068, 939071, ..., 939549, 939551, 939554],
 ...,
 [976455, 976458, 976460, ..., 976938, 976941, 976943],
 [976565, 976568, 976570, ..., 977048, 977051, 977053],
 [976675, 976678, 976680, ..., 977158, 977161, 977163]], dtype=int32)

or both at he same time:

mdio._headers[:][["189", "193"]]

array([[(788937, 938846), (789047, 938848), (789157, 938851), ...,
 (809282, 939329), (809392, 939331), (809502, 939334)],
 [(788935, 938956), (789045, 938958), (789155, 938961), ...,
 (809279, 939439), (809389, 939441), (809499, 939444)],
 [(788932, 939066), (789042, 939068), (789152, 939071), ...,
 (809276, 939549), (809386, 939551), (809496, 939554)],
 ...,
 [(788044, 976455), (788154, 976458), (788264, 976460), ...,
 (808389, 976938), (808499, 976941), (808609, 976943)],
 [(788042, 976565), (788152, 976568), (788262, 976570), ...,
 (808386, 977048), (808496, 977051), (808606, 977053)],
 [(788039, 976675), (788149, 976678), (788259, 976680), ...,
 (808383, 977158), (808493, 977161), (808603, 977163)]],
 dtype={'names': ['189', '193'], 'formats': ['<i4', '<i4'], 'offsets': [188, 192], 'itemsize': 232})

As we mentioned before, we can also get specific slices of headers while fetching a slice.

Let’s fetch a crossline, we are still using some previous parameters.

Since crossline is our second dimension, we can put the index in the second mdio[...] axis.

Since MDIO returns the headers as well, we can plot the headers on top of the image.

All headers will be returned, so we can select the X-coordinate at byte 189.

Full headers can be mapped and plotted as well, but we won’t demonstrate that here.

crossline_index = int(mdio.coord_to_index(100, dimensions="crossline"))
xl_mask, xl_headers, xl_data = mdio[:, crossline_index]

vmin, vmax = -2 * std, 2 * std

gs_kw = dict(height_ratios=(1, 5))
fig, ax = plt.subplots(2, 1, gridspec_kw=gs_kw, sharex="all")

ax[0].plot(inlines, xl_headers["189"])

ax[1].pcolormesh(inlines, times, xl_data.T, vmin=vmin, vmax=vmax, cmap="gray_r")
ax[1].invert_yaxis()
ax[1].set_xlabel("inline")
ax[1].set_ylabel("twt (ms)")

plt.suptitle(f"Crossline {100} with header.");

[image: ../_images/37b0563f6ed93f5fdf8de351e77d98a5390b1c2847b6f3b80be9744453071eaa.png]

MDIO to SEG-Y Conversion

Finally, let’s demonstrate going back to SEG-Y.

We will use the convenient mdio_to_segy function and write it out as a round-trip file.

from mdio import mdio_to_segy

mdio_to_segy(
 mdio_path_or_buffer="filt_mig.mdio",
 output_segy_path="filt_mig_roundtrip.sgy",
)

Array shape is (345, 188, 1501)
Setting (dask) chunks from (128, 128, 128) to (128, 128, 1501)

Validate Round-Trip SEG-Y File

We can validate if the round-trip SEG-Y file is matching the original using segyio.

Step by step:

	Open original file

	Open round-trip file

	Compare text headers

	Compare binary headers

	Compare 100 random headers and traces

import numpy as np
import segyio

original_fp = segyio.open("filt_mig.sgy", iline=181, xline=185)
roundtrip_fp = segyio.open("filt_mig_roundtrip.sgy", iline=181, xline=185)

Compare text header
assert original_fp.text[0] == roundtrip_fp.text[0]

Compare bin header
assert original_fp.bin == roundtrip_fp.bin

Compare 100 random trace headers and traces
rng = np.random.default_rng()
rand_indices = rng.integers(low=0, high=original_fp.tracecount, size=100)
for idx in rand_indices:
 np.testing.assert_equal(original_fp.header[idx], roundtrip_fp.header[idx])
 np.testing.assert_equal(original_fp.trace[idx], roundtrip_fp.trace[idx])

original_fp.close()
roundtrip_fp.close()

 Seismic Data Compression

Seismic Data Compression

In this page we will be showing compression performance of MDIO.

For demonstration purposes, we will use one of the Volve dataset stacks.
The dataset is licensed by Equinor and Volve License Partners under Equinor Open Data Licence.
License document and further information can be found here [https://www.equinor.com/energy/volve-data-sharing].

We are using the 3D seismic stack dataset named ST10010ZC11_PZ_PSDM_KIRCH_FAR_D.MIG_FIN.POST_STACK.3D.JS-017536.segy.

However, for convenience, we renamed it to volve.segy.

Warning

The examples below need the following extra dependencies:

	Matplotlib [https://matplotlib.org/] for plotting.

	Scikit-image [https://scikit-image.org/] for calculating metrics.

Please install them before executing using pip or conda.

Note

Even though we demonstrate with Volve here, this notebook can be run with any seismic dataset.

If you are new to MDIO we recommend you first look at our quick start guide

from mdio import segy_to_mdio, MDIOReader

Ingestion

We will ingest three files:

	Lossless mode

	Lossy mode (with default tolerance)

	Lossy mode (with more compression, more relaxed tolerance)

Lossless (Default)

segy_to_mdio(
 "volve.segy",
 "volve.mdio",
 (189, 193),
 # lossless=True,
 # compression_tolerance=0.01,
)

print("Done.")

Done.

Lossy Default

Equivalent to tolerance = 0.01.

segy_to_mdio(
 "volve.segy",
 "volve_lossy.mdio",
 (189, 193),
 lossless=False,
 # compression_tolerance=0.01,
)

print("Done.")

Done.

Lossy+ (A Lot of Compression)

Here we set tolerance = 1. This means all our errors will be comfortably under 1.0.

segy_to_mdio(
 "volve.segy",
 "volve_lossy_plus.mdio",
 (189, 193),
 lossless=False,
 compression_tolerance=1,
)

print("Done.")

Done.

Observe Sizes

Since MDIO uses a hierarchical directory structure, we provide a convenience function to get
size of it using directory recursion and getting size.

import os

def get_dir_size(path: str) -> int:
 """Get size of a directory recursively."""
 total = 0
 with os.scandir(path) as it:
 for entry in it:
 if entry.is_file():
 total += entry.stat().st_size
 elif entry.is_dir():
 total += get_dir_size(entry.path)
 return total

def get_size(path: str) -> int:
 """Get size of a folder or a file."""
 if os.path.isfile(path):
 return os.path.getsize(path)

 elif os.path.isdir(path):
 return get_dir_size(path)

print(f"SEG-Y:\t{get_size('volve.segy') / 1024 / 1024:.2f} MB")
print(f"MDIO:\t{get_size('volve.mdio') / 1024 / 1024:.2f} MB")
print(f"Lossy:\t{get_size('volve_lossy.mdio') / 1024 / 1024:.2f} MB")
print(f"Lossy+:\t{get_size('volve_lossy_plus.mdio') / 1024 / 1024:.2f} MB")

SEG-Y:	1305.02 MB
MDIO:	998.80 MB
Lossy:	263.57 MB
Lossy+:	52.75 MB

Open Files, and Get Raw Statistics

lossless = MDIOReader("volve.mdio")
lossy = MDIOReader("volve_lossy.mdio")
lossy_plus = MDIOReader("volve_lossy_plus.mdio")

stats = lossless.stats
std = stats["std"]
min_ = stats["min"]
max_ = stats["max"]

Plot Images with Differences

Let’s define some plotting functions for convenience.

Here, we will make two plots showing data for lossy and lossy+ versions.

We will be showing the following subplots for each dataset:

	Lossless Inline

	Lossy Inline

	Difference

	1,000x Gained Difference

We will be using ± 3 * standard_deviation of the colorbar ranges.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

vmin = -3 * std
vmax = 3 * std

imshow_kw = dict(vmin=vmin, vmax=vmax, cmap="gray_r", interpolation="bilinear")

def attach_colorbar(image, axis):
 divider = make_axes_locatable(axis)
 cax = divider.append_axes("top", size="2%", pad=0.05)
 plt.colorbar(image, cax=cax, orientation="horizontal")
 cax.xaxis.set_ticks_position("top")
 cax.tick_params(labelsize=8)

def plot_image_and_cbar(data, axis, title):
 image = axis.imshow(data.T, **imshow_kw)
 attach_colorbar(image, axis)
 axis.set_title(title, y=-0.15)

def plot_inlines_with_diff(orig, compressed, title):
 fig, ax = plt.subplots(1, 4, sharey="all", sharex="all", figsize=(12, 5))

 diff = orig[200] - compressed[200]

 plot_image_and_cbar(orig[200], ax[0], "original")
 plot_image_and_cbar(compressed[200], ax[1], "lossy")
 plot_image_and_cbar(diff, ax[2], "difference")
 plot_image_and_cbar(diff * 1_000, ax[3], "1,000x difference")

 plt.suptitle(f"{title} ({std=})")
 fig.tight_layout()

 plt.show()

plot_inlines_with_diff(lossless, lossy, "Default Lossy")
plot_inlines_with_diff(lossless, lossy_plus, "More Lossy")

[image: ../_images/bf6f729c188fd11c88054949ca8103482264d820550b1d829fb902481c8e293b.png]
[image: ../_images/5d1c5b002db2043d98cf3720bb76f496f3079c4a11b446bec6edff2b800d9422.png]

Calculate Metrics

For image quality, there are some metrics used by the broader image compression community.

In this example we will be using the following four metrics as comparison.

	PSNR: Peak signal-to-noise ratio for an image. (higher is better)

	SSIM: Mean structural similarity index between two images. (higher is better, maximum value is 1.0)

	MSE: Compute the mean-squared error between two images. (lower is better)

	NRMSE: Normalized root mean-squared error between two images. (lower is better)

For PSNR or SSIM, we use the global dataset range (max - min) as the normalization method.

In image compression community, a PSNR value above 60 dB (decibels) is considered acceptable.

We calculate these metrics on the same inline we show above.

import skimage

def get_metrics(image_true, image_test):
 """Get four metrics"""
 psnr = skimage.metrics.peak_signal_noise_ratio(
 image_true[200], image_test[200], data_range=max_ - min_
)
 ssim = skimage.metrics.structural_similarity(
 image_true[200], image_test[200], data_range=max_ - min_
)
 mse = skimage.metrics.mean_squared_error(image_true[200], image_test[200])
 nrmse = skimage.metrics.normalized_root_mse(image_true[200], image_test[200])

 return psnr, ssim, mse, nrmse

print("Lossy", get_metrics(lossless, lossy))
print("Lossy+", get_metrics(lossless, lossy_plus))

Lossy (106.69280984265322, 0.9999999784224242, 9.176027503792131e-08, 0.000330489434736117)
Lossy+ (66.27609586061718, 0.999721336954417, 0.0010100110026414078, 0.0346731484815586)

 Optimizing Access Patterns

Optimizing Access Patterns

Introduction

In this page we will be showing how we can take an existing MDIO and add
fast access, lossy, versions of the data in X/Y/Z cross-sections (slices).

We can re-use the MDIO dataset we created in the Quickstart page.
Please run it first.

We will define our compression levels first. We will use this to adjust the quality
of the lossy compression.

from enum import Enum

class MdioZfpQuality(float, Enum):
 """Config options for ZFP compression."""

 VERY_LOW = 6
 LOW = 3
 MEDIUM = 1
 HIGH = 0.1
 VERY_HIGH = 0.01
 ULTRA = 0.001

We will use the lower level MDIOAccessor to open the existing file in write mode that
allows us to modify its raw metadata. This can be dangerous, we recommend using only provided
tools to avoid data corruption.

We specify the original access pattern of the source data "012" with some parameters like
caching. For the rechunking, we recommend using the single threaded "zarr" backend to avoid
race conditions.

We also define a dict for common arguments in rechunking.

from mdio.api.accessor import MDIOAccessor

mdio_path = "filt_mig.mdio"

orig_mdio_cached = MDIOAccessor(
 mdio_path_or_buffer=mdio_path,
 mode="w",
 access_pattern="012",
 storage_options=None,
 return_metadata=False,
 new_chunks=None,
 backend="zarr",
 memory_cache_size=2**28,
 disk_cache=False,
)

Compression (Lossy)

Now, let’s define our compression level. The compression ratios vary a lot
on the data characteristics. However, the compression levels here are good
guidelines that are based on standard deviation of the original data.

We use ZFP’s fixed accuracy mode with a tolerance based on data standard
deviation, as mentioned above. For more ZFP options you can see its documentation.

Empirically, for this dataset, we see the following size reductions (per copy):

	10 : 1 on VERY_LOW

	7.5 : 1 on LOW

	4.5 : 1 on MEDIUM

	3 : 1 on HIGH

	2 : 1 on VERY_HIGH

	1.5 : 1 on ULTRA

from numcodecs import ZFPY
from zfpy import mode_fixed_accuracy

std = orig_mdio_cached.stats["std"] # standard deviation of original data

quality = MdioZfpQuality.LOW
tolerance = quality * std
sample_compressor = ZFPY(mode_fixed_accuracy, tolerance=tolerance)

common_kwargs = {"overwrite": True, "compressor": sample_compressor}

Optimizing IL/XL/Z Independently

In this cell, we will demonstrate how to create IL/XL and Z (two-way-time) optimized
versions independently. In the next section we will do the same with the batch
mode where the data only needs to be read into memory once.

In the example below, each rechunking operation will read the data from the original
MDIO dataset and discard it. We did enable 256 MB (2^28 bytes) memory cache above,
it will help some, but still not ideal.

from mdio.api.convenience import rechunk

rechunk(orig_mdio_cached, (4, 512, 512), suffix="fast_il", **common_kwargs)
rechunk(orig_mdio_cached, (512, 4, 512), suffix="fast_xl", **common_kwargs)
rechunk(orig_mdio_cached, (512, 512, 4), suffix="fast_z", **common_kwargs)

Rechunking to fast_il: 100%|██████████| 3/3 [00:01<00:00, 1.77chunk/s]
Rechunking to fast_xl: 100%|██████████| 3/3 [00:01<00:00, 1.90chunk/s]
Rechunking to fast_z: 100%|██████████| 3/3 [00:01<00:00, 1.97chunk/s]

We can now open the original MDIO dataset and the fast access patterns.
When printing the chunks attribute, we see the original one first, and
the subsequent ones show data is rechunked with ZFP compression.

from mdio import MDIOReader

orig_mdio = MDIOReader(mdio_path)
il_mdio = MDIOReader(mdio_path, access_pattern="fast_il")
xl_mdio = MDIOReader(mdio_path, access_pattern="fast_xl")
z_mdio = MDIOReader(mdio_path, access_pattern="fast_z")

print(orig_mdio.chunks, orig_mdio._traces.compressor)
print(il_mdio.chunks, il_mdio._traces.compressor)
print(xl_mdio.chunks, xl_mdio._traces.compressor)
print(z_mdio.chunks, z_mdio._traces.compressor)

(64, 64, 64) Blosc(cname='zstd', clevel=5, shuffle=SHUFFLE, blocksize=0)
(4, 187, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 4, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 187, 4) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)

We can now compare the sizes of the compressed representations to original.

Below commands are for UNIX based operating systems and won’t work on Windows.

!du -hs {mdio_path}/data/chunked_012
!du -hs {mdio_path}/data/chunked_fast_il
!du -hs {mdio_path}/data/chunked_fast_xl
!du -hs {mdio_path}/data/chunked_fast_z

149M	filt_mig.mdio/data/chunked_012
 21M	filt_mig.mdio/data/chunked_fast_il
 20M	filt_mig.mdio/data/chunked_fast_xl
 21M	filt_mig.mdio/data/chunked_fast_z

Comparing local disk read speeds for inlines:

%timeit orig_mdio[175] # 3d chunked
%timeit il_mdio[175] # inline optimized

31.1 ms ± 825 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
3.6 ms ± 52.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

For crosslines:

%timeit orig_mdio[:, 90] # 3d chunked
%timeit xl_mdio[:, 90] # xline optimized

65.3 ms ± 705 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
8.76 ms ± 353 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Finally, for Z (time-slices):

%timeit orig_mdio[..., 751] # 3d chunked
%timeit z_mdio[..., 751] # time-slice optimized

6.36 ms ± 185 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
872 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

We can check the subjective quality of the compression by visually comparing
two inlines. Similar to the example we had in the Compression page.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

vmin = -3 * std
vmax = 3 * std

imshow_kw = dict(vmin=vmin, vmax=vmax, cmap="gray_r", interpolation="bilinear", aspect="auto")

def attach_colorbar(image, axis):
 divider = make_axes_locatable(axis)
 cax = divider.append_axes("top", size="2%", pad=0.05)
 plt.colorbar(image, cax=cax, orientation="horizontal")
 cax.xaxis.set_ticks_position("top")
 cax.tick_params(labelsize=8)

def plot_image_and_cbar(data, axis, title):
 image = axis.imshow(data.T, **imshow_kw)
 attach_colorbar(image, axis)
 axis.set_title(title, y=-0.15)

def plot_inlines_with_diff(orig, compressed, title):
 fig, ax = plt.subplots(1, 4, sharey="all", sharex="all", figsize=(8, 5))

 diff = orig[200] - compressed[200]

 plot_image_and_cbar(orig[200], ax[0], "original")
 plot_image_and_cbar(compressed[200], ax[1], "lossy")
 plot_image_and_cbar(diff, ax[2], "difference")
 plot_image_and_cbar(diff * 1_000, ax[3], "1,000x difference")

 plt.suptitle(f"{title} ({std=})")
 fig.tight_layout()

 plt.show()

plot_inlines_with_diff(orig_mdio, il_mdio, "")

[image: ../_images/7208ae0d0a25d34cf19f7b930f958a35bed575037806e92b9a243375ff64928c.png]

In conclusion, we show that by generating optimized, lossy compressed copies of the data
for certain access patterns yield big performance benefits when reading the data.

The differences are orders of magnitude larger on big datasets and remote stores, given available
network bandwidth.

Optimizing in Batch

Now that we understand how rechunking and lossy compression works, we will demonstrate how
to do this in batches.

The benefit of doing the batched processing is that the dataset gets read once. This is
especially important if the original MDIO resides in a remote store like AWS S3, or Google
Cloud’s GCS.

Note that we not are overwriting the old optimized chunks, just creating new ones with the
suffix 2 to demonstrate we can create as many version of the original data as we want.

from mdio.api.convenience import rechunk_batch

rechunk_batch(
 orig_mdio_cached,
 chunks_list=[(4, 512, 512), (512, 4, 512), (512, 512, 4)],
 suffix_list=["fast_il2", "fast_xl2", "fast_z2"],
 **common_kwargs,
)

Rechunking to fast_il2,fast_xl2,fast_z2: 100%|██████████| 3/3 [00:05<00:00, 1.84s/chunk]

from mdio import MDIOReader

orig_mdio = MDIOReader(mdio_path)
il2_mdio = MDIOReader(mdio_path, access_pattern="fast_il2")
xl2_mdio = MDIOReader(mdio_path, access_pattern="fast_xl2")
z2_mdio = MDIOReader(mdio_path, access_pattern="fast_z2")

print(orig_mdio.chunks, orig_mdio._traces.compressor)
print(il_mdio.chunks, il2_mdio._traces.compressor)
print(xl_mdio.chunks, xl2_mdio._traces.compressor)
print(z_mdio.chunks, z2_mdio._traces.compressor)

(64, 64, 64) Blosc(cname='zstd', clevel=5, shuffle=SHUFFLE, blocksize=0)
(4, 187, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 4, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 187, 4) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)

 Usage

Usage

Ingestion and Export

The following example shows how to minimally ingest a 3D seismic stack into
a local MDIO file. Only one lossless copy will be made.

There are many more options, please see the CLI Reference.

$ mdio segy import \
 path_to_segy_file.segy \
 path_to_mdio_file.mdio \
 -loc 181,185 \
 -names inline,crossline

To export the same file back to SEG-Y format, the following command
should be executed.

$ mdio segy export \
 path_to_mdio_file.mdio \
 path_to_segy_file.segy

Cloud Connection Strings

MDIO supports I/O on major cloud service providers. The cloud I/O capabilities are
supported using the fsspec [https://filesystem-spec.readthedocs.io/] and its specialized
version for:

	Amazon Web Services (AWS S3) - s3fs [https://s3fs.readthedocs.io]

	Google Cloud Provider (GCP GCS) - gcsfs [https://gcsfs.readthedocs.io]

	Microsoft Azure (Datalake Gen2) - adlfs [https://github.com/fsspec/adlfs]

Any other file-system supported by fsspec will also be supported by MDIO. However,
we will focus on the major providers here.

The protocols that help choose a backend (i.e. s3://, gs://, or az://) can be passed
prepended to the MDIO path.

The connection string can be passed to the command-line-interface (CLI) using the
-storage, --storage-options flag as a JSON string or the Python API with the storage_options
keyword argument as a Python dictionary.

Warning

On Windows clients, JSON strings are passed to the CLI with a special escape character.

For instance a JSON string:

{"key": "my_super_private_key", "secret": "my_super_private_secret"}

must be passed with an escape character \ for inner quotes as:

"{\"key\": \"my_super_private_key\", \"secret\": \"my_super_private_secret\"}"

whereas, on Linux bash this works just fine:

'{"key": "my_super_private_key", "secret": "my_super_private_secret"}'

If this done incorrectly, you will get an invalid JSON string error from the CLI.

Amazon Web Services

Credentials can be automatically fetched from pre-authenticated AWS CLI.
See here [https://s3fs.readthedocs.io/en/latest/index.html#credentials] for the order s3fs
checks them. If it is not pre-authenticated, you need to pass --storage-options.

Prefix:

s3://

Storage Options:

key: The auth key from AWS

secret: The auth secret from AWS

Using UNIX:

mdio segy import \
 path/to/my.segy \
 s3://bucket/prefix/my.mdio \
 --header-locations 189,193 \
 --storage-options '{"key": "my_super_private_key", "secret": "my_super_private_secret"}'

Using Windows (note the extra escape characters \):

mdio segy import \
 path/to/my.segy \
 s3://bucket/prefix/my.mdio \
 --header-locations 189,193 \
 --storage-options "{\"key\": \"my_super_private_key\", \"secret\": \"my_super_private_secret\"}"

Google Cloud Provider

Credentials can be automatically fetched from pre-authenticated gcloud CLI.
See here [https://gcsfs.readthedocs.io/en/latest/#credentials] for the order gcsfs
checks them. If it is not pre-authenticated, you need to pass --storage-options.

GCP uses service accounts [https://cloud.google.com/iam/docs/service-accounts] to pass
authentication information to APIs.

Prefix:

gs:// or gcs://

Storage Options:

token: The service account JSON value as string, or local path to JSON

Using a service account:

mdio segy import \
 path/to/my.segy \
 gs://bucket/prefix/my.mdio \
 --header-locations 189,193 \
 --storage-options '{"token": "~/.config/gcloud/application_default_credentials.json"}'

Using browser to populate authentication:

mdio segy import \
 path/to/my.segy \
 gs://bucket/prefix/my.mdio \
 --header-locations 189,193 \
 --storage-options '{"token": "browser"}'

Microsoft Azure

There are various ways to authenticate with Azure Data Lake (ADL).
See here [https://github.com/fsspec/adlfs#details] for some details.
If ADL is not pre-authenticated, you need to pass --storage-options.

Prefix:

az:// or abfs://

Storage Options:

account_name: Azure Data Lake storage account name

account_key: Azure Data Lake storage account access key

mdio segy import \
 path/to/my.segy \
 az://bucket/prefix/my.mdio \
 --header-locations 189,193 \
 --storage-options '{"account_name": "myaccount", "account_key": "my_super_private_key"}'

Advanced Cloud Features

There are additional functions provided by fsspec. These are advanced features and we refer
the user to read fsspec documentation [https://filesystem-spec.readthedocs.io/en/latest/features.html].
Some useful examples are:

	Caching Files Locally

	Remote Write Caching

	File Buffering and random access

	Mount anything with FUSE

Note

When combining advanced protocols like simplecache and using a remote store like s3 the
URL can be chained like simplecache::s3://bucket/prefix/file.mdio. When doing this the
--storage-options argument must explicitly state parameters for the cloud backend and the
extra protocol. For the above example it would look like this:

{
 "s3": {
 "key": "my_super_private_key",
 "secret": "my_super_private_secret"
 },
 "simplecache": {
 "cache_storage": "/custom/temp/storage/path"
 }
}

In one line:

{"s3": {"key": "my_super_private_key", "secret": "my_super_private_secret"}, "simplecache": {"cache_storage": "/custom/temp/storage/path"}

CLI Reference

MDIO provides a convenient command-line-interface (CLI) to do
various tasks.

For each command / subcommand you can provide --help argument to
get information about usage.

mdio

Welcome to MDIO!

MDIO is an open source, cloud-native, and scalable storage engine
for various types of energy data.

MDIO supports importing or exporting various data containers,
hence we allow plugins as subcommands.

From this main command, we can see the MDIO version.

mdio [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

copy

Copy a MDIO dataset to anpther MDIO dataset.

Can also copy with empty data to be filled later. See excludes
and includes parameters.

More documentation about excludes and includes can be found
in Zarr’s documentation in zarr.convenience.copy_store.

mdio copy [OPTIONS] SOURCE_MDIO_PATH TARGET_MDIO_PATH

Options

	
-access, --access-pattern <access_pattern>

	Access pattern of the file

	Default:

	012

	
-exc, --excludes <excludes>

	Data to exclude during copy, like chunked_012. The data values won’t be copied but an empty array will be created. If blank, it copies everything.

	
-inc, --includes <includes>

	Data to include during copy, like trace_headers. If not specified, and certain data is excluded, it will not copy headers. To preserve headers, specify trace_headers. If left blank, it will copy everything except what is specified in the ‘excludes’ parameter.

	
-storage, --storage-options <storage_options>

	Custom storage options for cloud backends

	
-overwrite, --overwrite

	Flag to overwrite if mdio file if it exists

	Default:

	False

Arguments

	
SOURCE_MDIO_PATH

	Required argument

	
TARGET_MDIO_PATH

	Required argument

info

Provide information on a MDIO dataset.

By default, this returns human-readable information about the grid and stats for
the dataset. If output-format is set to json then a json is returned to
facilitate parsing.

mdio info [OPTIONS] MDIO_PATH

Options

	
-access, --access-pattern <access_pattern>

	Access pattern of the file

	Default:

	012

	
-format, --output-format <output_format>

	Output format. Pretty console or JSON.

	Default:

	pretty

	Options:

	pretty | json

Arguments

	
MDIO_PATH

	Required argument

segy

MDIO and SEG-Y conversion utilities. Below is general information
about the SEG-Y format and MDIO features. For import or export
specific functionality check the import or export modules:

mdio segy import –help

mdio segy export –help

MDIO can import SEG-Y files to a modern, chunked format.

The SEG-Y format is defined by the Society of Exploration Geophysicists
as a data transmission format and has its roots back to 1970s. There are
currently multiple revisions of the SEG-Y format.

MDIO can unravel and index any SEG-Y file that is on a regular grid.
There is no limitation to dimensionality of the data, as long as it can
be represented on a regular grid. Most seismic surveys are on a regular
grid of unique shot/receiver IDs or are imaged on regular CDP or
INLINE/CROSSLINE grids.

The SEG-Y headers are used as identifiers to take the flattened SEG-Y
data and convert it to the multi-dimensional tensor representation. An
example of ingesting a 3-D Post-Stack seismic data can be though as the
following, per the SEG-Y Rev1 standard:

–header-names inline,crossline

–header-locations 189,193

–header-types int32,int32

Our recommended chunk sizes are:

(Based on GCS benchmarks)

3D: 64 x 64 x 64

2D: 512 x 512

The 4D+ datasets chunking recommendation depends on the type of
4D+ dataset (i.e. SHOT vs CDP data will have different chunking).

MDIO also import or export big and little endian coded IBM or IEEE floating
point formatted SEG-Y files. MDIO can also build a grid from arbitrary header
locations for indexing. However, the headers are stored as the SEG-Y Rev 1
after ingestion.

mdio segy [OPTIONS] COMMAND [ARGS]...

export

Export MDIO file to SEG-Y.

SEG-Y format is explained in the “segy” group of the command line
interface. To see additional information run:

mdio segy –help

MDIO allows exporting multidimensional seismic data back to the flattened
seismic format SEG-Y, to be used in data transmission.

The input headers are preserved as is, and will be transferred to the
output file.

The user has control over the endianness, and the floating point data
type. However, by default we export as Big-Endian IBM float, per the
SEG-Y format’s default.

The input MDIO can be local or cloud based. However, the output SEG-Y
will be generated locally.

mdio segy export [OPTIONS] MDIO_FILE SEGY_PATH

Options

	
-access, --access-pattern <access_pattern>

	Access pattern of the file

	Default:

	012

	
-format, --segy-format <segy_format>

	SEG-Y sample format

	Default:

	ibm32

	Options:

	ibm32 | ieee32

	
-storage, --storage-options <storage_options>

	Custom storage options for cloud backends.

	
-endian, --endian <endian>

	Endianness of the SEG-Y file

	Default:

	big

	Options:

	little | big

Arguments

	
MDIO_FILE

	Required argument

	
SEGY_PATH

	Required argument

import

Ingest SEG-Y file to MDIO.

SEG-Y format is explained in the “segy” group of the command line
interface. To see additional information run:

mdio segy –help

MDIO allows ingesting flattened seismic surveys in SEG-Y format
into a multidimensional tensor that represents the correct
geometry of the seismic dataset.

The SEG-Y file must be on disk, MDIO currently does not support
reading SEG-Y directly from the cloud object store.

The output MDIO file can be local or on the cloud. For local
files, a UNIX or Windows path is sufficient. However, for cloud
stores, an appropriate protocol must be provided. Some examples:

File Path Patterns:

 Reference

Reference

Readers / Writers

MDIO accessor APIs.

	
class mdio.api.accessor.MDIOAccessor(mdio_path_or_buffer, mode, access_pattern, storage_options, return_metadata, new_chunks, backend, memory_cache_size, disk_cache)

	Accessor class for MDIO files.

The accessor can be used to read and write MDIO files. It allows you to
open an MDIO file in several mode and access_pattern combinations.

Access pattern defines the dimensions that are chunked. For instance
if you have a 3-D array that is chunked in every direction (i.e. a
3-D seismic stack consisting of inline, crossline, and sample dimensions)
its access pattern would be “012”. If it was only chunked in the first
two dimensions (i.e. seismic inline and crossline), it would be “01”.

By default, MDIO will try to open with “012” access pattern, and will
raise an error if that pattern doesn’t exist.

After dataset is opened, when the accessor is sliced it will either return
just seismic trace data as a Numpy array or a tuple of live mask, headers,
and seismic trace in Numpy based on the parameter return_metadata.

Regarding object store access, if the user credentials have been set
system-wide on local machine or VM; there is no need to specify credentials.
However, the storage_options option allows users to specify credentials
for the store that is being accessed. Please see the fsspec documentation
for configuring storage options.

MDIO currently supports Zarr and Dask backends. The Zarr backend
is useful for reading small amounts of data with minimal overhead. However,
by utilizing the Dask backend with a larger chunk size using the
new_chunks argument, the data can be read in parallel using a Dask
LocalCluster or a distributed Cluster.

The accessor also allows users to enable fsspec caching. These are
particularly useful when we are accessing the data from a high-latency
store such as object stores, or mounted network drives with high latency.
We can use the disk_cache option to fetch chunks the local temporary
directory for faster repetitive access. We can also turn on the Least
Recently Used (LRU) cache by using the memory_cache option. It has
to be specified in bytes.

	Parameters:

	
	mdio_path_or_buffer (str) – Store URL for MDIO file. This can be either on
a local disk, or a cloud object store.

	mode (str) – Read or read/write mode. The file must exist. Options are
in {‘r’, ‘r+’, ‘w’}. ‘r’ is read only, ‘r+’ is append mode where
only existing arrays can be modified, ‘w’ is similar to ‘r+’
but rechunking or other file-wide operations are allowed.

	access_pattern (str) – Chunk access pattern, optional. Default is “012”.
Examples: ‘012’, ‘01’, ‘01234’.

	storage_options (dict | None) – Options for the storage backend. By default,
system-wide credentials will be used. If system-wide credentials
are not set and the source is not public, an authentication
error will be raised by the backend.

	return_metadata (bool) – Flag for returning live mask, headers, and traces
or just the trace data. Default is False, which means just trace
data will be returned.

	new_chunks (tuple[int, ...] | None) – Chunk sizes used in Dask backend. Ignored for Zarr
backend. By default, the disk-chunks will be used. However, if
we want to stream groups of chunks to a Dask worker, we can
rechunk here. Then each Dask worker can asynchronously fetch
multiple chunks before working.

	backend (str) – Backend selection, optional. Default is “zarr”. Must be
in {‘zarr’, ‘dask’}.

	memory_cache_size (int) – Maximum, in memory, least recently used (LRU)
cache size in bytes.

	disk_cache (bool) – Disk cache implemented by fsspec, optional. Default is
False, which turns off disk caching. See simplecache from
fsspec documentation for more details.

	Raises:

	MDIONotFoundError – If the MDIO file can not be opened.

Notes

The combination of the Dask backend and caching schemes are experimental.
This configuration may cause unexpected memory usage and duplicate data
fetching.

Examples

Assuming we ingested my_3d_seismic.segy as my_3d_seismic.mdio we can
open the file in read-only mode like this.

>>> from mdio import MDIOReader
>>>
>>>
>>> mdio = MDIOReader("my_3d_seismic.mdio")

This will open the file with the lazy Zarr backend. To access a
specific inline, crossline, or sample index we can do:

>>> inline = mdio[15] # get the 15th inline
>>> crossline = mdio[:, 15] # get the 50th crossline
>>> samples = mdio[..., 250] # get the 250th sample slice

The above will variables will be Numpy arrays of the relevant
trace data. If we want to retreive the live mask and trace headers
for our sliding we need to open the file with the return_metadata
option.

>>> mdio = MDIOReader("my_3d_seismic.mdio", return_metadata=True)

Then we can fetch the data like this (for inline):

>>> il_live, il_headers, il_traces = mdio[15]

Since MDIOAccessor returns a tuple with these three Numpy arrays,
we can directly unpack it and use it further down our code.

Accessor initialization function.

	
coord_to_index(*args, dimensions=None)

	Convert dimension coordinate to zero-based index.

The coordinate labels of the array dimensions are converted to
zero-based indices. For instance if we have an inline dimension like
this:

[10, 20, 30, 40, 50]

then the indices would be:

[0, 1, 2, 3, 4]

This method converts from coordinate labels of a dimension to
equivalent indices.

Multiple dimensions can be queried at the same time, see the examples.

	Parameters:

	
	*args – Variable length argument queries. # noqa: RST213

	dimensions (str | list[str] | None) – Name of the dimensions to query. If not provided, it
will query all dimensions in the grid and will require
len(args) == grid.ndim

	Returns:

	Zero-based indices of coordinates. Each item in result corresponds
to indicies of that dimension

	Raises:

	
	ShapeError – if number of queries don’t match requested dimensions.

	ValueError – if requested coordinates don’t exist.

	Return type:

	tuple[ndarray[Any, dtype[int]], …]

Examples

Opening an MDIO file.

>>> from mdio import MDIOReader
>>>
>>>
>>> mdio = MDIOReader("path_to.mdio")
>>> mdio.coord_to_index([10, 7, 15], dimensions='inline')
array([8, 5, 13], dtype=uint16)

>>> ils, xls = [10, 7, 15], [5, 10]
>>> mdio.coord_to_index(ils, xls, dimensions=['inline', 'crossline'])
(array([8, 5, 13], dtype=uint16), array([3, 8], dtype=uint16))

With the above indices, we can slice the data:

>>> mdio[ils] # only inlines
>>> mdio[:, xls] # only crosslines
>>> mdio[ils, xls] # intersection of the lines

Note that some fancy-indexing may not work with Zarr backend.
The Dask backend is more flexible when it comes to indexing.

If we are querying all dimensions of a 3D array, we can omit the
dimensions argument.

>>> mdio.coord_to_index(10, 5, [50, 100])
(array([8], dtype=uint16),
 array([3], dtype=uint16),
 array([25, 50], dtype=uint16))

	
copy(dest_path_or_buffer, excludes='', includes='', storage_options=None, overwrite=False)

	Makes a copy of an MDIO file with or without all arrays.

Refer to mdio.api.convenience.copy for full documentation.

	Parameters:

	
	dest_path_or_buffer (str) – Destination path. Could be any FSSpec mapping.

	excludes (str) – Data to exclude during copy. i.e. chunked_012. The raw data
won’t be copied, but it will create an empty array to be filled.
If left blank, it will copy everything.

	includes (str) – Data to include during copy. i.e. trace_headers. If this is
not specified, and certain data is excluded, it will not copy headers.
If you want to preserve headers, specify trace_headers. If left blank,
it will copy everything except specified in excludes parameter.

	storage_options (dict | None) – Storage options for the cloud storage backend.
Default is None (will assume anonymous).

	overwrite (bool) – Overwrite destination or not.

	
property binary_header: dict

	Get seismic binary header metadata.

	
property chunks: tuple[int, ...]

	Get dataset chunk sizes.

	
property live_mask: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | Array

	Get live mask (i.e. not-null value mask).

	
property n_dim: int

	Get number of dimensions for dataset.

	
property shape: tuple[int, ...]

	Get shape of dataset.

	
property stats: dict

	Get global statistics like min/max/rms/std.

	
property text_header: list

	Get seismic text header.

	
property trace_count: int

	Get trace count from seismic MDIO.

	
class mdio.api.accessor.MDIOReader(mdio_path_or_buffer, access_pattern='012', storage_options=None, return_metadata=False, new_chunks=None, backend='zarr', memory_cache_size=0, disk_cache=False)

	Read-only accessor for MDIO files.

For detailed documentation see MDIOAccessor.

	Parameters:

	
	mdio_path_or_buffer (str) – Store URL for MDIO file. This can be either on
a local disk, or a cloud object store.

	access_pattern (str) – Chunk access pattern, optional. Default is “012”.
Examples: ‘012’, ‘01’, ‘01234’.

	storage_options (dict) – Options for the storage backend. By default,
system-wide credentials will be used. If system-wide credentials
are not set and the source is not public, an authentication
error will be raised by the backend.

	return_metadata (bool) – Flag for returning live mask, headers, and traces
or just the trace data. Default is False, which means just trace
data will be returned.

	new_chunks (tuple[int, ...]) – Chunk sizes used in Dask backend. Ignored for Zarr
backend. By default, the disk-chunks will be used. However, if
we want to stream groups of chunks to a Dask worker, we can
rechunk here. Then each Dask worker can asynchronously fetch
multiple chunks before working.

	backend (str) – Backend selection, optional. Default is “zarr”. Must be
in {‘zarr’, ‘dask’}.

	memory_cache_size (int) – Maximum, in memory, least recently used (LRU)
cache size in bytes.

	disk_cache (bool) – Disk cache implemented by fsspec, optional. Default is
False, which turns off disk caching. See simplecache from
fsspec documentation for more details.

Initialize super class with r permission.

	
class mdio.api.accessor.MDIOWriter(mdio_path_or_buffer, access_pattern='012', storage_options=None, return_metadata=False, new_chunks=None, backend='zarr', memory_cache_size=0, disk_cache=False)

	Writable accessor for MDIO files.

For detailed documentation see MDIOAccessor.

	Parameters:

	
	mdio_path_or_buffer (str) – Store URL for MDIO file. This can be either on
a local disk, or a cloud object store.

	access_pattern (str) – Chunk access pattern, optional. Default is “012”.
Examples: ‘012’, ‘01’, ‘01234’.

	storage_options (dict) – Options for the storage backend. By default,
system-wide credentials will be used. If system-wide credentials
are not set and the source is not public, an authentication
error will be raised by the backend.

	return_metadata (bool) – Flag for returning live mask, headers, and traces
or just the trace data. Default is False, which means just trace
data will be returned.

	new_chunks (tuple[int, ...]) – Chunk sizes used in Dask backend. Ignored for Zarr
backend. By default, the disk-chunks will be used. However, if
we want to stream groups of chunks to a Dask worker, we can
rechunk here. Then each Dask worker can asynchronously fetch
multiple chunks before working.

	backend (str) – Backend selection, optional. Default is “zarr”. Must be
in {‘zarr’, ‘dask’}.

	memory_cache_size (int) – Maximum, in memory, least recently used (LRU)
cache size in bytes.

	disk_cache (bool) – Disk cache implemented by fsspec, optional. Default is
False, which turns off disk caching. See simplecache from
fsspec documentation for more details.

Initialize super class with r+ permission.

Data Converters

Seismic Data

Note

By default, the SEG-Y ingestion tool uses Python’s multiprocessing
to speed up parsing the data. This almost always requires a __main__
guard on any other Python code that is executed directly like
python file.py. When running inside Jupyter, this is NOT needed.

1if __name__ == "__main__":
2 segy_to_mdio(...)

When the CLI is invoked, this is already handled.

See the official multiprocessing documentation
here [https://docs.python.org/3/library/multiprocessing.html#the-process-class]
and
here [https://docs.python.org/3/library/multiprocessing.html#multiprocessing-programming].

Conversion from SEG-Y to MDIO.

	
mdio.converters.segy.segy_to_mdio(segy_path, mdio_path_or_buffer, index_bytes, index_names=None, index_types=None, chunksize=None, endian='big', lossless=True, compression_tolerance=0.01, storage_options=None, overwrite=False, grid_overrides=None)

	Convert SEG-Y file to MDIO format.

MDIO allows ingesting flattened seismic surveys in SEG-Y format into a
multidimensional tensor that represents the correct geometry of the
seismic dataset.

The SEG-Y file must be on disk, MDIO currently does not support reading
SEG-Y directly from the cloud object store.

The output MDIO file can be local or on the cloud. For local files, a
UNIX or Windows path is sufficient. However, for cloud stores, an
appropriate protocol must be provided. See examples for more details.

The SEG-Y headers for indexing must also be specified. The index byte
locations (starts from 1) are the minimum amount of information needed
to index the file. However, we suggest giving names to the index
dimensions, and if needed providing the header lengths if they are not
standard. By default, all header entries are assumed to be 4-byte long.

The chunk size depends on the data type, however, it can be chosen to
accommodate any workflow’s access patterns. See examples below for some
common use cases.

By default, the data is ingested with LOSSLESS compression. This saves
disk space in the range of 20% to 40%. MDIO also allows data to be
compressed using the ZFP compressor’s fixed rate lossy compression. If
lossless parameter is set to False and MDIO was installed using the lossy
extra; then the data will be compressed to approximately 30% of its
original size and will be perceptually lossless. The compression ratio
can be adjusted using the option compression_ratio (integer). Higher
values will compress more, but will introduce artifacts.

	Parameters:

	
	segy_path (str) – Path to the input SEG-Y file

	mdio_path_or_buffer (str) – Output path for MDIO file

	index_bytes (Sequence[int]) – Tuple of the byte location for the index attributes

	index_names (Sequence[str] | None) – Tuple of the index names for the index attributes

	index_types (Sequence[str] | None) – Tuple of the data-types for the index attributes.
Must be in {“int16, int32, float16, float32, ibm32”}
Default is 4-byte integers for each index key.

	chunksize (Sequence[int] | None) – Override default chunk size, which is (64, 64, 64) if
3D, and (512, 512) for 2D.

	endian (str) – Endianness of the input SEG-Y. Rev.2 allows little endian.
Default is ‘big’. Must be in {“big”, “little”}

	lossless (bool) – Lossless Blosc with zstandard, or ZFP with fixed precision.

	compression_tolerance (float) – Tolerance ZFP compression, optional. The fixed
accuracy mode in ZFP guarantees there won’t be any errors larger
than this value. The default is 0.01, which gives about 70%
reduction in size. Will be ignored if lossless=True.

	storage_options (dict[str, Any] | None) – Storage options for the cloud storage backend.
Default is None (will assume anonymous)

	overwrite (bool) – Toggle for overwriting existing store

	grid_overrides (dict | None) – Option to add grid overrides. See examples.

	Raises:

	
	GridTraceCountError – Raised if grid won’t hold all traces in the
 SEG-Y file.

	ValueError – If length of chunk sizes don’t match number of dimensions.

	NotImplementedError – If can’t determine chunking automatically for 4D+.

	Return type:

	None

Examples

If we are working locally and ingesting a 3D post-stack seismic file,
we can use the following example. This will ingest with default chunks
of 128 x 128 x 128.

>>> from mdio import segy_to_mdio
>>>
>>>
>>> segy_to_mdio(
... segy_path="prefix1/file.segy",
... mdio_path_or_buffer="prefix2/file.mdio",
... index_bytes=(189, 193),
... index_names=("inline", "crossline")
...)

If we are on Amazon Web Services, we can do it like below. The
protocol before the URL can be s3 for AWS, gcs for Google
Cloud, and abfs for Microsoft Azure. In this example we also
change the chunk size as a demonstration.

>>> segy_to_mdio(
... segy_path="prefix/file.segy",
... mdio_path_or_buffer="s3://bucket/file.mdio",
... index_bytes=(189, 193),
... index_names=("inline", "crossline"),
... chunksize=(64, 64, 512),
...)

Another example of loading a 4D seismic such as 3D seismic
pre-stack gathers is below. This will allow us to extract offset
planes efficiently or run things in a local neighborhood very
efficiently.

>>> segy_to_mdio(
... segy_path="prefix/file.segy",
... mdio_path_or_buffer="s3://bucket/file.mdio",
... index_bytes=(189, 193, 37),
... index_names=("inline", "crossline", "offset"),
... chunksize=(16, 16, 16, 512),
...)

We can override the dataset grid by the grid_overrides parameter.
This allows us to ingest files that don’t conform to the true
geometry of the seismic acquisition.

For example if we are ingesting 3D seismic shots that don’t have
a cable number and channel numbers are sequential (i.e. each cable
doesn’t start with channel number 1; we can tell MDIO to ingest
this with the correct geometry by calculating cable numbers and
wrapped channel numbers. Note the missing byte location and word
length for the “cable” index.

>>> segy_to_mdio(
... segy_path="prefix/shot_file.segy",
... mdio_path_or_buffer="s3://bucket/shot_file.mdio",
... index_bytes=(17, None, 13),
... index_lengths=(4, None, 4),
... index_names=("shot", "cable", "channel"),
... chunksize=(8, 2, 128, 1024),
... grid_overrides={
... "ChannelWrap": True, "ChannelsPerCable": 800,
... "CalculateCable": True
... },
...)

If we do have cable numbers in the headers, but channels are still
sequential (aka. unwrapped), we can still ingest it like this.

>>> segy_to_mdio(
... segy_path="prefix/shot_file.segy",
... mdio_path_or_buffer="s3://bucket/shot_file.mdio",
... index_bytes=(17, 137, 13),
... index_lengths=(4, 2, 4),
... index_names=("shot_point", "cable", "channel"),
... chunksize=(8, 2, 128, 1024),
... grid_overrides={"ChannelWrap": True, "ChannelsPerCable": 800},
...)

For shot gathers with channel numbers and wrapped channels, no
grid overrides are necessary.

In cases where the user does not know if the input has unwrapped
channels but desires to store with wrapped channel index use:
>>> grid_overrides={“AutoChannelWrap”: True,

“AutoChannelTraceQC”: 1000000}

For ingestion of pre-stack streamer data where the user needs to
access/index common-channel gathers (single gun) then the following
strategy can be used to densely ingest while indexing on gun number:

>>> segy_to_mdio(
... segy_path="prefix/shot_file.segy",
... mdio_path_or_buffer="s3://bucket/shot_file.mdio",
... index_bytes=(133, 171, 17, 137, 13),
... index_lengths=(2, 2, 4, 2, 4),
... index_names=("shot_line", "gun", "shot_point", "cable", "channel"),
... chunksize=(1, 1, 8, 1, 128, 1024),
... grid_overrides={
... "AutoShotWrap": True,
... "AutoChannelWrap": True,
... "AutoChannelTraceQC": 1000000
... },
...)

For AutoShotWrap and AutoChannelWrap to work, the user must provide
“shot_line”, “gun”, “shot_point”, “cable”, “channel”. For improved
common-channel performance consider modifying the chunksize to be
(1, 1, 32, 1, 32, 2048) for good common-shot and common-channel
performance or (1, 1, 128, 1, 1, 2048) for common-channel
performance.

For cases with no well-defined trace header for indexing a NonBinned
grid override is provided.This creates the index and attributes an
incrementing integer to the trace for the index based on first in first
out. For example a CDP and Offset keyed file might have a header for offset
as real world offset which would result in a very sparse populated index.
Instead, the following override will create a new index from 1 to N, where
N is the number of offsets within a CDP ensemble. The index to be auto
generated is called “trace”. Note the required “chunksize” parameter in
the grid override. This is due to the non-binned ensemble chunksize is
irrelevant to the index dimension chunksizes and has to be specified
in the grid override itself. Note the lack of offset, only indexing CDP,
providing CDP header type, and chunksize for only CDP and Sample
dimension. The chunksize for non-binned dimension is in the grid overrides
as described above. The below configuration will yield 1MB chunks:

>>> segy_to_mdio(
... segy_path="prefix/cdp_offset_file.segy",
... mdio_path_or_buffer="s3://bucket/cdp_offset_file.mdio",
... index_bytes=(21,),
... index_types=("int32",),
... index_names=("cdp",),
... chunksize=(4, 1024),
... grid_overrides={"NonBinned": True, "chunksize": 64},
...)

A more complicated case where you may have a 5D dataset that is not
binned in Offset and Azimuth directions can be ingested like below.
However, the Offset and Azimuth dimensions will be combined to “trace”
dimension. The below configuration will yield 1MB chunks.

>>> segy_to_mdio(
... segy_path="prefix/cdp_offset_file.segy",
... mdio_path_or_buffer="s3://bucket/cdp_offset_file.mdio",
... index_bytes=(189, 193),
... index_types=("int32", "int32"),
... index_names=("inline", "crossline"),
... chunksize=(4, 4, 1024),
... grid_overrides={"NonBinned": True, "chunksize": 64},
...)

For dataset with expected duplicate traces we have the following
parameterization. This will use the same logic as NonBinned with
a fixed chunksize of 1. The other keys are still important. The
below example allows multiple traces per receiver (i.e. reshoot).

>>> segy_to_mdio(
... segy_path="prefix/cdp_offset_file.segy",
... mdio_path_or_buffer="s3://bucket/cdp_offset_file.mdio",
... index_bytes=(9, 213, 13),
... index_types=("int32", "int16", "int32"),
... index_names=("shot", "cable", "chan"),
... chunksize=(8, 2, 256, 512),
... grid_overrides={"HasDuplicates": True},
...)

Conversion from to MDIO various other formats.

	
mdio.converters.mdio.mdio_to_segy(mdio_path_or_buffer, output_segy_path, endian='big', access_pattern='012', out_sample_format='ibm32', storage_options=None, new_chunks=None, selection_mask=None, client=None)

	Convert MDIO file to SEG-Y format.

MDIO allows exporting multidimensional seismic data back to the flattened
seismic format SEG-Y, to be used in data transmission.

The input headers are preserved as is, and will be transferred to the
output file.

The user has control over the endianness, and the floating point data
type. However, by default we export as Big-Endian IBM float, per the
SEG-Y format’s default.

The input MDIO can be local or cloud based. However, the output SEG-Y
will be generated locally.

A selection_mask can be provided (in the shape of the spatial grid)
to export a subset of the seismic data.

	Parameters:

	
	mdio_path_or_buffer (str) – Input path where the MDIO is located

	output_segy_path (str) – Path to the output SEG-Y file

	endian (str) – Endianness of the input SEG-Y. Rev.2 allows little
endian. Default is ‘big’.

	access_pattern (str) – This specificies the chunk access pattern. Underlying
zarr.Array must exist. Examples: ‘012’, ‘01’

	out_sample_format (str) – Output sample format.
Currently support: {‘ibm32’, ‘float32’}. Default is ‘ibm32’.

	storage_options (dict) – Storage options for the cloud storage backend.
Default: None (will assume anonymous access)

	new_chunks (tuple[int, ...]) – Set manual chunksize. For development purposes only.

	selection_mask (np.ndarray) – Array that lists the subset of traces

	client (distributed.Client) – Dask client. If None we will use local threaded scheduler.
If auto is used we will create multiple processes (with
8 threads each).

	Raises:

	
	ImportError – if distributed package isn’t installed but requested.

	ValueError – if cut mask is empty, i.e. no traces will be written.

	Return type:

	None

Examples

To export an existing local MDIO file to SEG-Y we use the code
snippet below. This will export the full MDIO (without padding) to
SEG-Y format using IBM floats and big-endian byte order.

>>> from mdio import mdio_to_segy
>>>
>>>
>>> mdio_to_segy(
... mdio_path_or_buffer="prefix2/file.mdio",
... output_segy_path="prefix/file.segy",
...)

If we want to export this as an IEEE big-endian, using a selection
mask, we would run:

>>> mdio_to_segy(
... mdio_path_or_buffer="prefix2/file.mdio",
... output_segy_path="prefix/file.segy",
... selection_mask=boolean_mask,
... out_sample_format="float32",
...)

Core Functionality

Dimensions

Dimension (grid) abstraction and serializers.

	
class mdio.core.dimension.Dimension(coords, name)

	Dimension class.

Dimension has a name and coordinates associated with it.
The Dimension coordinates can only be a vector.

	Parameters:

	
	coords (list | tuple | ndarray[Any, dtype[_ScalarType_co]] | range) – Vector of coordinates.

	name (str) – Name of the dimension.

	
classmethod deserialize(stream, stream_format)

	Deserialize buffer into Dimension.

	Parameters:

	
	stream (str) –

	stream_format (str) –

	Return type:

	Dimension

	
classmethod from_dict(other)

	Make dimension from dictionary.

	Parameters:

	other (dict[str, Any]) –

	Return type:

	Dimension

	
max()

	Get maximum value of dimension.

	Return type:

	NDArray[np.float]

	
min()

	Get minimum value of dimension.

	Return type:

	NDArray[np.float]

	
serialize(stream_format)

	Serialize the dimension into buffer.

	Parameters:

	stream_format (str) –

	Return type:

	str

	
to_dict()

	Convert dimension to dictionary.

	Return type:

	dict[str, Any]

	
property size: int

	Size of the dimension.

	
class mdio.core.dimension.DimensionSerializer(stream_format)

	Serializer implementation for Dimension.

Initialize serializer.

	Parameters:

	stream_format (str) – Stream format. Must be in {“JSON”, “YAML”}.

	
deserialize(stream)

	Deserialize buffer into Dimension.

	Parameters:

	stream (str) –

	Return type:

	Dimension

	
serialize(dimension)

	Serialize Dimension into buffer.

	Parameters:

	dimension (Dimension) –

	Return type:

	str

Data I/O

(De)serialization factory design pattern.

Current support for JSON and YAML.

	
class mdio.core.serialization.Serializer(stream_format)

	Serializer base class.

Here we define the interface for any serializer implementation.

	Parameters:

	stream_format (str) – Format of the stream for serialization.

Initialize serializer.

	Parameters:

	stream_format (str) – Stream format. Must be in {“JSON”, “YAML”}.

	
abstract deserialize(stream)

	Abstract method for deserialize.

	Parameters:

	stream (str) –

	Return type:

	dict

	
abstract serialize(payload)

	Abstract method for serialize.

	Parameters:

	payload (dict) –

	Return type:

	str

	
static validate_payload(payload, signature)

	Validate if required keys exist in the payload for a function signature.

	Parameters:

	
	payload (dict) –

	signature (Signature) –

	Return type:

	dict

	
mdio.core.serialization.get_deserializer(stream_format)

	Get deserializer based on format.

	Parameters:

	stream_format (str) –

	Return type:

	Callable

	
mdio.core.serialization.get_serializer(stream_format)

	Get serializer based on format.

	Parameters:

	stream_format (str) –

	Return type:

	Callable

Convenience Functions

Convenience APIs for working with MDIO files.

	
mdio.api.convenience.copy_mdio(source, dest_path_or_buffer, excludes='', includes='', storage_options=None, overwrite=False)

	Copy MDIO file.

Can also copy with empty data to be filled later. See excludes
and includes parameters.

More documentation about excludes and includes can be found
in Zarr’s documentation in zarr.convenience.copy_store.

	Parameters:

	
	source (MDIOReader) – MDIO reader or accessor instance. Data will be copied from here

	dest_path_or_buffer (str) – Destination path. Could be any FSSpec mapping.

	excludes (str) – Data to exclude during copy. i.e. chunked_012. The raw data
won’t be copied, but it will create an empty array to be filled.
If left blank, it will copy everything.

	includes (str) – Data to include during copy. i.e. trace_headers. If this is
not specified, and certain data is excluded, it will not copy headers.
If you want to preserve headers, specify trace_headers. If left blank,
it will copy everything except specified in excludes parameter.

	storage_options (dict | None) – Storage options for the cloud storage backend.
Default is None (will assume anonymous).

	overwrite (bool) – Overwrite destination or not.

	Return type:

	None

	
mdio.api.convenience.rechunk(source, chunks, suffix, compressor=None, overwrite=False)

	Rechunk MDIO file adding a new variable.

	Parameters:

	
	source (MDIOAccessor) – MDIO accessor instance. Data will be copied from here.

	chunks (tuple[int, ...]) – Tuple containing chunk sizes for new rechunked array.

	suffix (str) – Suffix to append to new rechunked array.

	compressor (Codec | None) – Data compressor to use, optional. Default is Blosc(‘zstd’).

	overwrite (bool) – Overwrite destination or not.

	Return type:

	None

Examples

To rechunk a single variable we can do this

>>> accessor = MDIOAccessor(...)
>>> rechunk(accessor, (1, 1024, 1024), suffix="fast_il")

	
mdio.api.convenience.rechunk_batch(source, chunks_list, suffix_list, compressor=None, overwrite=False)

	Rechunk MDIO file to multiple variables, reading it once.

	Parameters:

	
	source (MDIOAccessor) – MDIO accessor instance. Data will be copied from here.

	chunks_list (list[tuple[int, ...]]) – List of tuples containing new chunk sizes.

	suffix_list (list[str]) – List of suffixes to append to new chunk sizes.

	compressor (Codec | None) – Data compressor to use, optional. Default is Blosc(‘zstd’).

	overwrite (bool) – Overwrite destination or not.

	Return type:

	None

Examples

To rechunk multiple variables we can do things like:

>>> accessor = MDIOAccessor(...)
>>> rechunk_batch(
>>> accessor,
>>> chunks_list=[(1, 1024, 1024), (1024, 1, 1024), (1024, 1024, 1)],
>>> suffix_list=["fast_il", "fast_xl", "fast_z"],
>>>)

 Contributor Guide

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the Apache 2.0 license [https://opensource.org/licenses/Apache-2.0] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/TGSAI/mdio-python]

	Documentation [https://mdio-python.readthedocs.io/]

	Issue Tracker [https://github.com/TGSAI/mdio-python/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/TGSAI/mdio-python/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/TGSAI/mdio-python/issues].

How to set up your development environment

You need Python 3.9+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Another alternative is to use a Development Container [https://containers.dev/] has been setup to provide
an environment with the required dependencies. This facilitates development on
different systems.

This should seamlessly enable development for users of VS Code [https://code.visualstudio.com/docs/devcontainers/containers/] on systems with docker installed.

Known Issues:

	git config --global --add safe.directory $(pwd) might be needed inside the container.

How to Install and Run MDIO

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run mdio

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/TGSAI/mdio-python/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

 Contributor Covenant Code of Conduct

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or advances of
any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email address,
without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
opensource@tgs.com.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

 License

License

Copyright 2022 TGS

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

--

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mdio	

 	
 	
 mdio.api.accessor	

 	
 	
 mdio.api.convenience	

 	
 	
 mdio.converters.mdio	

 	
 	
 mdio.converters.segy	

 	
 	
 mdio.core.dimension	

 	
 	
 mdio.core.serialization	

 Index

Index

 Symbols
 | B
 | C
 | D
 | F
 | G
 | L
 | M
 | N
 | R
 | S
 | T
 | V

Symbols

 	
 	
 --access-pattern

 	mdio-copy command line option

 	mdio-info command line option

 	mdio-segy-export command line option

 	
 --chunk-size

 	mdio-segy-import command line option

 	
 --compression-tolerance

 	mdio-segy-import command line option

 	
 --endian

 	mdio-segy-export command line option

 	mdio-segy-import command line option

 	
 --excludes

 	mdio-copy command line option

 	
 --grid-overrides

 	mdio-segy-import command line option

 	
 --header-locations

 	mdio-segy-import command line option

 	
 --header-names

 	mdio-segy-import command line option

 	
 --header-types

 	mdio-segy-import command line option

 	
 --includes

 	mdio-copy command line option

 	
 --lossless

 	mdio-segy-import command line option

 	
 --output-format

 	mdio-info command line option

 	
 --overwrite

 	mdio-copy command line option

 	mdio-segy-import command line option

 	
 --segy-format

 	mdio-segy-export command line option

 	
 --storage-options

 	mdio-copy command line option

 	mdio-segy-export command line option

 	mdio-segy-import command line option

 	
 	
 --version

 	mdio command line option

 	
 -access

 	mdio-copy command line option

 	mdio-info command line option

 	mdio-segy-export command line option

 	
 -chunks

 	mdio-segy-import command line option

 	
 -endian

 	mdio-segy-export command line option

 	mdio-segy-import command line option

 	
 -exc

 	mdio-copy command line option

 	
 -format

 	mdio-info command line option

 	mdio-segy-export command line option

 	
 -grid-overrides

 	mdio-segy-import command line option

 	
 -inc

 	mdio-copy command line option

 	
 -loc

 	mdio-segy-import command line option

 	
 -lossless

 	mdio-segy-import command line option

 	
 -names

 	mdio-segy-import command line option

 	
 -overwrite

 	mdio-copy command line option

 	mdio-segy-import command line option

 	
 -storage

 	mdio-copy command line option

 	mdio-segy-export command line option

 	mdio-segy-import command line option

 	
 -tolerance

 	mdio-segy-import command line option

 	
 -types

 	mdio-segy-import command line option

B

 	
 	binary_header (mdio.api.accessor.MDIOAccessor property)

C

 	
 	chunks (mdio.api.accessor.MDIOAccessor property)

 	coord_to_index() (mdio.api.accessor.MDIOAccessor method)

 	
 	copy() (mdio.api.accessor.MDIOAccessor method)

 	copy_mdio() (in module mdio.api.convenience)

D

 	
 	deserialize() (mdio.core.dimension.Dimension class method)

 	(mdio.core.dimension.DimensionSerializer method)

 	(mdio.core.serialization.Serializer method)

 	
 	Dimension (class in mdio.core.dimension)

 	DimensionSerializer (class in mdio.core.dimension)

F

 	
 	from_dict() (mdio.core.dimension.Dimension class method)

G

 	
 	get_deserializer() (in module mdio.core.serialization)

 	
 	get_serializer() (in module mdio.core.serialization)

L

 	
 	live_mask (mdio.api.accessor.MDIOAccessor property)

M

 	
 	max() (mdio.core.dimension.Dimension method)

 	
 mdio command line option

 	--version

 	
 mdio-copy command line option

 	--access-pattern

 	--excludes

 	--includes

 	--overwrite

 	--storage-options

 	-access

 	-exc

 	-inc

 	-overwrite

 	-storage

 	SOURCE_MDIO_PATH

 	TARGET_MDIO_PATH

 	
 mdio-info command line option

 	--access-pattern

 	--output-format

 	-access

 	-format

 	MDIO_PATH

 	
 mdio-segy-export command line option

 	--access-pattern

 	--endian

 	--segy-format

 	--storage-options

 	-access

 	-endian

 	-format

 	-storage

 	MDIO_FILE

 	SEGY_PATH

 	
 mdio-segy-import command line option

 	--chunk-size

 	--compression-tolerance

 	--endian

 	--grid-overrides

 	--header-locations

 	--header-names

 	--header-types

 	--lossless

 	--overwrite

 	--storage-options

 	-chunks

 	-endian

 	-grid-overrides

 	-loc

 	-lossless

 	-names

 	-overwrite

 	-storage

 	-tolerance

 	-types

 	MDIO_PATH

 	SEGY_PATH

 	
 	
 mdio.api.accessor

 	module

 	
 mdio.api.convenience

 	module

 	
 mdio.converters.mdio

 	module

 	
 mdio.converters.segy

 	module

 	
 mdio.core.dimension

 	module

 	
 mdio.core.serialization

 	module

 	
 MDIO_FILE

 	mdio-segy-export command line option

 	
 MDIO_PATH

 	mdio-info command line option

 	mdio-segy-import command line option

 	mdio_to_segy() (in module mdio.converters.mdio)

 	MDIOAccessor (class in mdio.api.accessor)

 	MDIOReader (class in mdio.api.accessor)

 	MDIOWriter (class in mdio.api.accessor)

 	min() (mdio.core.dimension.Dimension method)

 	
 module

 	mdio.api.accessor

 	mdio.api.convenience

 	mdio.converters.mdio

 	mdio.converters.segy

 	mdio.core.dimension

 	mdio.core.serialization

N

 	
 	n_dim (mdio.api.accessor.MDIOAccessor property)

R

 	
 	rechunk() (in module mdio.api.convenience)

 	
 	rechunk_batch() (in module mdio.api.convenience)

S

 	
 	
 SEGY_PATH

 	mdio-segy-export command line option

 	mdio-segy-import command line option

 	segy_to_mdio() (in module mdio.converters.segy)

 	serialize() (mdio.core.dimension.Dimension method)

 	(mdio.core.dimension.DimensionSerializer method)

 	(mdio.core.serialization.Serializer method)

 	
 	Serializer (class in mdio.core.serialization)

 	shape (mdio.api.accessor.MDIOAccessor property)

 	size (mdio.core.dimension.Dimension property)

 	
 SOURCE_MDIO_PATH

 	mdio-copy command line option

 	stats (mdio.api.accessor.MDIOAccessor property)

T

 	
 	
 TARGET_MDIO_PATH

 	mdio-copy command line option

 	
 	text_header (mdio.api.accessor.MDIOAccessor property)

 	to_dict() (mdio.core.dimension.Dimension method)

 	trace_count (mdio.api.accessor.MDIOAccessor property)

V

 	
 	validate_payload() (mdio.core.serialization.Serializer static method)

_images/7208ae0d0a25d34cf19f7b930f958a35bed575037806e92b9a243375ff64928c.png
9305394453239418)

-2 o

origin