
MDIO

TGS

Apr 04, 2024

CONTENTS

1 Installing MDIO 3

2 Using MDIO 5

3 Requirements 7

4 Contributing to MDIO 9

5 Licensing 11

6 Issues 13

7 Credits 15

Python Module Index 71

Index 73

i

ii

MDIO

“MDIO” is a library to work with large multidimensional energy datasets. The primary motivation behind MDIO is
to represent multidimensional time series data in a format that makes it easier to use in resource assessment, machine
learning, and data processing workflows.

See the documentation for more information.

This is not an official TGS product.

Shared Features

• Abstractions for common energy data types (see below).

• Cloud native chunked storage based on Zarr and fsspec.

• Lossy and lossless data compression using Blosc and ZFP.

• Distributed reads and writes using Dask.

• Powerful command-line-interface (CLI) based on Click

Domain Specific Features

• Oil & Gas Data

– Import and export 2D - 5D seismic data types stored in SEG-Y.

– Import seismic interpretation, horizon, data. FUTURE

– Optimized chunking logic for various seismic types. FUTURE

• Wind Resource Assessment

– Numerical weather prediction models with arbitrary metadata. FUTURE

– Optimized chunking logic for time-series analysis and mapping. FUTURE

– Xarray interface. FUTURE

The features marked as FUTURE will be open-sourced at a later date.

CONTENTS 1

https://mdio-python.readthedocs.io/en/latest/installation.html#using-pip-and-virtualenv
https://mdio-python.readthedocs.io/en/latest/installation.html#using-conda
https://pypi.org/project/multidimio
https://pypi.org/project/multidimio/
https://github.com/TGSAI/mdio-python/actions?workflow=Tests
https://app.codecov.io/gh/TGSAI/mdio-python
https://mdio-python.readthedocs.io/
https://github.com/pre-commit/pre-commit
https://pypi.org/project/multidimio/
https://anaconda.org/conda-forge/multidimio
https://mdio-python.readthedocs.io/
https://zarr.dev/
https://filesystem-spec.readthedocs.io/en/latest/
https://www.blosc.org/
https://computing.llnl.gov/projects/zfp
https://www.dask.org/
https://palletsprojects.com/p/click/
https://xarray.dev/

MDIO

2 CONTENTS

CHAPTER

ONE

INSTALLING MDIO

Simplest way to install MDIO via pip from PyPI:

$ pip install multidimio

or install MDIO via conda from conda-forge:

$ conda install -c conda-forge multidimio

Extras must be installed separately on Conda environments.

For details, please see the installation instructions in the documentation.

3

https://pip.pypa.io/
https://pypi.org/
https://docs.conda.io/
https://conda-forge.org/

MDIO

4 Chapter 1. Installing MDIO

CHAPTER

TWO

USING MDIO

Please see the Command-line Usage for details.

For Python API please see the API Reference for details.

5

MDIO

6 Chapter 2. Using MDIO

CHAPTER

THREE

REQUIREMENTS

3.1 Minimal

Chunked storage and parallelization: zarr, dask, numba, and psutil.
SEG-Y Parsing: segyio
CLI and Progress Bars: click, click-params, and tqdm.

3.2 Optional

Distributed computing [distributed]: distributed and bokeh.
Cloud Object Store I/O [cloud]: s3fs, gcsfs, and adlfs.
Lossy Compression [lossy]: zfpy

7

MDIO

8 Chapter 3. Requirements

CHAPTER

FOUR

CONTRIBUTING TO MDIO

Contributions are very welcome. To learn more, see the Contributor Guide.

9

MDIO

10 Chapter 4. Contributing to MDIO

CHAPTER

FIVE

LICENSING

Distributed under the terms of the Apache 2.0 license, MDIO is free and open source software.

11

MDIO

12 Chapter 5. Licensing

CHAPTER

SIX

ISSUES

If you encounter any problems, please file an issue along with a detailed description.

13

https://github.com/TGSAI/mdio-python/issues

MDIO

14 Chapter 6. Issues

CHAPTER

SEVEN

CREDITS

This project was established at TGS. Current maintainer is Altay Sansal with the support of many more great colleagues.

This project template is based on @cjolowicz’s Hypermodern Python Cookiecutter template.

7.1 Install Instructions

There are different ways to install MDIO:

• Install the latest release via pip or conda.

• Building package from source.

Note: We strongly recommend using a virtual environment venv or conda to avoid potential conflicts with other
Python packages.

7.1.1 Using pip and virtualenv

Install the 64-bit version of Python 3 from https://www.python.org.

Then we can create a venv and install MDIO.

$ python -m venv mdio-venv
$ mdio-venv/Scripts/activate
$ pip install -U multidimio

To check if installation was successful see checking installation.

You can also install some optional dependencies (extras) like this:

$ pip install multidimio[distributed]
$ pip install multidimio[cloud]
$ pip install multidimio[lossy]

distributed installs Dask for parallel, distributed processing.
cloud installs fsspec backed I/O libraries for AWS’ S3, Google’s GCS, and Azure ABS.
lossy will install the ZFPY library for lossy chunk compression.

15

https://www.tgs.com/
https://github.com/tasansal
https://github.com/cjolowicz
https://github.com/cjolowicz/cookiecutter-hypermodern-python
https://www.python.org
https://www.dask.org/
https://filesystem-spec.readthedocs.io/en/latest/
https://s3fs.readthedocs.io/
https://gcsfs.readthedocs.io/
https://github.com/fsspec/adlfs
https://computing.llnl.gov/projects/zfp

MDIO

7.1.2 Using conda

MDIO can also be installed in a conda environment.

Note: MDIO is hosted in the conda-forge channel. Make sure to always provide the -c conda-forgewhen running
conda install or else it won’t be able to find the package.

We first run the following to create and activate an environment:

$ conda create -n mdio-env
$ conda activate mdio-env

Then we can to install with conda:

$ conda install -c conda-forge multidimio

The above command will install MDIO into your conda environment.

Note: MDIO extras must be installed separately when using conda.

7.1.3 Checking Installation

After installing MDIO, run the following:

$ python -c "import mdio; print(mdio.__version__)"

You should see the version of MDIO printed to the screen.

7.1.4 Building from Source

All dependencies of MDIO are Python packages, so the build process is very simple. To install from source, we need
to clone the repo first and then install locally via pip.

$ git clone https://github.com/TGSAI/mdio-python.git
$ cd mdio-python
$ pip install .

We can also install the extras in a similar way, for example:

$ pip install .[cloud]

If you want an editable version of MDIO then we could install it with the command below. This does allow you to make
code changes on the fly.

$ pip install --editable .[cloud]

To check if installation was successful see checking installation.

16 Chapter 7. Credits

MDIO

7.2 Get Started in 10 Minutes

In this page we will be showing basic capabilities of MDIO.

For demonstration purposes, we will download the Teapot Dome open-source dataset. The dataset details and licensing
can be found at the SEG Wiki.

We are using the 3D seismic stack dataset named filt_mig.sgy.

The full link for the dataset (hosted on AWS): http://s3.amazonaws.com/teapot/filt_mig.sgy

Warning: For plotting, the notebook requires Matplotlib as a dependency. Please install it before executing using
pip install matplotlib or conda install matplotlib.

7.2.1 Downloading the SEG-Y Dataset

Let’s download this dataset to our working directory. It may take from a few seconds up to a couple minutes based on
your internet connection speed. The file is 386 MB in size.

The dataset is irregularly shaped, however it is padded to a rectangle with zero (dead traces). We will see that later at
the live mask plotting.

from os import path
from urllib.request import urlretrieve

url = "http://s3.amazonaws.com/teapot/filt_mig.sgy"
urlretrieve(url, "filt_mig.sgy")

('filt_mig.sgy', <http.client.HTTPMessage at 0x7feb830b3b50>)

7.2.2 Ingesting to MDIO Format

To do this, we can use the convenient SEG-Y to MDIO converter.

The inline and crossline values are located at bytes 181 and 185. Note that this is not SEG-Y standard.

from mdio import segy_to_mdio

segy_to_mdio(
segy_path="filt_mig.sgy",
mdio_path_or_buffer="filt_mig.mdio",
index_bytes=(181, 185),
index_names=("inline", "crossline"),

)

Scanning SEG-Y for geometry attributes: 0%| ␣
→˓ |...

Ingesting SEG-Y in 6 chunks: 0%| ␣
→˓ |...

7.2. Get Started in 10 Minutes 17

https://wiki.seg.org/wiki/Teapot_dome_3D_survey
http://s3.amazonaws.com/teapot/filt_mig.sgy
https://matplotlib.org/

MDIO

It only took a few seconds to ingest, since this is a very small file.

However, MDIO scales up to TB (that’s 1000 GB) sized volumes!

7.2.3 Opening the Ingested MDIO File

Let’s open the MDIO file with the MDIOReader.

We will also turn on return_metadata function to get the live trace mask and trace headers.

from mdio import MDIOReader

mdio = MDIOReader("filt_mig.mdio", return_metadata=True)

7.2.4 Querying Metadata

Now let’s look at the Textual Header by the convenient text_header attribute.

You will notice the text header is parsed as a list of strings that are 80 characters long.

mdio.text_header

['C 1 CLIENT: ROCKY MOUNTAIN OILFIELD TESTING CENTER ',
'C 2 PROJECT: NAVAL PETROLEUM RESERVE #3 (TEAPOT DOME); NATRONA COUNTY, WYOMING ',
'C 3 LINE: 3D ',
'C 4 ',
'C 5 THIS IS THE FILTERED POST STACK MIGRATION ',
'C 6 ',
'C 7 INLINE 1, XLINE 1: X COORDINATE: 788937 Y COORDINATE: 938845 ',
'C 8 INLINE 1, XLINE 188: X COORDINATE: 809501 Y COORDINATE: 939333 ',
'C 9 INLINE 188, XLINE 1: X COORDINATE: 788039 Y COORDINATE: 976674 ',
'C10 INLINE NUMBER: MIN: 1 MAX: 345 TOTAL: 345 ',
'C11 CROSSLINE NUMBER: MIN: 1 MAX: 188 TOTAL: 188 ',
"C12 TOTAL NUMBER OF CDPS: 64860 BIN DIMENSION: 110' X 110' ",
'C13 ',
'C14 ',
'C15 ',
'C16 ',
'C17 ',
'C18 ',
'C19 GENERAL SEGY INFORMATION ',
'C20 RECORD LENGHT (MS): 3000 ',
'C21 SAMPLE RATE (MS): 2.0 ',
'C22 DATA FORMAT: 4 BYTE IBM FLOATING POINT ',
'C23 BYTES 13- 16: CROSSLINE NUMBER (TRACE) ',
'C24 BYTES 17- 20: INLINE NUMBER (LINE) ',
'C25 BYTES 81- 84: CDP_X COORD ',
'C26 BYTES 85- 88: CDP_Y COORD ',
'C27 BYTES 181-184: INLINE NUMBER (LINE) ',
'C28 BYTES 185-188: CROSSLINE NUMBER (TRACE) ',
'C29 BYTES 189-192: CDP_X COORD ',
'C30 BYTES 193-196: CDP_Y COORD ',
'C31 ',

(continues on next page)

18 Chapter 7. Credits

MDIO

(continued from previous page)

'C32 ',
'C33 ',
'C34 ',
'C35 ',
'C36 Processed by: Excel Geophysical Services, Inc. ',
'C37 8301 East Prentice Ave. Ste. 402 ',
'C38 Englewood, Colorado 80111 ',
'C39 (voice) 303.694.9629 (fax) 303.771.1646 ',
'C40 END EBCDIC ']

MDIO parses the binary header into a Python dictionary.

We can easily query it by the binary_header attribute and see critical information about the original file.

Since we use segyio for parsing the SEG-Y, the field names conform to it.

mdio.binary_header

{'AmplitudeRecovery': 4,
'AuxTraces': 0,
'BinaryGainRecovery': 1,
'CorrelatedTraces': 2,
'EnsembleFold': 57,
'ExtAuxTraces': 0,
'ExtEnsembleFold': 0,
'ExtSamples': 0,
'ExtSamplesOriginal': 0,
'ExtendedHeaders': 0,
'Format': 1,
'ImpulseSignalPolarity': 1,
'Interval': 2000,
'IntervalOriginal': 0,
'JobID': 9999,
'LineNumber': 9999,
'MeasurementSystem': 2,
'ReelNumber': 1,
'SEGYRevision': 0,
'SEGYRevisionMinor': 0,
'Samples': 1501,
'SamplesOriginal': 1501,
'SortingCode': 4,
'Sweep': 0,
'SweepChannel': 0,
'SweepFrequencyEnd': 0,
'SweepFrequencyStart': 0,
'SweepLength': 0,
'SweepTaperEnd': 0,
'SweepTaperStart': 0,
'Taper': 0,
'TraceFlag': 0,
'Traces': 188,
'VerticalSum': 1,
'VibratoryPolarity': 0}

7.2. Get Started in 10 Minutes 19

MDIO

7.2.5 MDIO Grid, Dimensions, and Related Attributes

MDIO also has named dimensions, so we can see which dimension (axis) corresponds to which coordinate.

MDIO has an abstraction for an N-Dimensional grid. We can get the grid, and look at some of its properties.

mdio.grid.dim_names

('inline', 'crossline', 'sample')

mdio.grid.get_min("inline")

1

mdio.grid.get_max("crossline")

188

We can extract a dimension by name, and see its values.

The Dimension has name and coords that returns a string and a numpy array.

mdio.grid.select_dim("inline")

Dimension(coords=array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,
339, 340, 341, 342, 343, 344, 345]), name='inline')

20 Chapter 7. Credits

MDIO

7.2.6 Fetching Data and Plotting

Now we will demonstrate getting an inline from MDIO.

Because MDIO can hold various dimensionality of data, we have to first query the inline location.

Then we can use the queried index to get the data itself.

We will also plot the inline, for this we need the crossline and sample coordinates.

MDIO stores dataset statistics. We can use the standard deviation (std) value of the dataset to adjust the gain.

import matplotlib.pyplot as plt

crosslines = mdio.grid.select_dim("crossline").coords
times = mdio.grid.select_dim("sample").coords

std = mdio.stats["std"]

inline_index = int(mdio.coord_to_index(278, dimensions="inline"))
il_mask, il_headers, il_data = mdio[inline_index]

vmin, vmax = -2 * std, 2 * std
plt.pcolormesh(crosslines, times, il_data.T, vmin=vmin, vmax=vmax, cmap="gray_r")
plt.gca().invert_yaxis()
plt.title(f"Inline {278}")
plt.xlabel("crossline")
plt.ylabel("twt (ms)");

7.2. Get Started in 10 Minutes 21

MDIO

Let’s do the same with a time sample.

We already have crossline labels and standard deviation, so we don’t have to fetch it again.

We will display two-way-time at 1,000 ms.

inlines = mdio.grid.select_dim("inline").coords

twt_index = int(mdio.coord_to_index(1_000, dimensions="sample"))
z_mask, z_headers, z_data = mdio[:, :, twt_index]

vmin, vmax = -2 * std, 2 * std
plt.pcolormesh(inlines, crosslines, z_data.T, vmin=vmin, vmax=vmax, cmap="gray_r")
plt.title(f"Two-way-time at {1000}ms")
plt.xlabel("inline")
plt.ylabel("crossline");

22 Chapter 7. Credits

MDIO

We can also overlay live mask with the time slice. However, in this example dataset is zero padded.

The live mask will always show True.

live_mask = mdio.live_mask[:]

plt.pcolormesh(inlines, crosslines, live_mask.T, vmin=0, vmax=1, alpha=0.5)
plt.pcolormesh(inlines, crosslines, z_data.T, vmin=vmin, vmax=vmax, cmap="gray_r",␣
→˓alpha=0.5)
plt.title(f"Two-way-time at {1000}ms")
plt.xlabel("inline")
plt.ylabel("crossline");

7.2. Get Started in 10 Minutes 23

MDIO

7.2.7 Query Headers

We can query headers for the whole dataset very quickly because they are separated from the seismic wavefield.

Let’s get all the headers for byte 189 and 193 (X and Y in this dataset, non-standard).

Note that the header maps will still honor the geometry of the dataset!

mdio._headers[:]["189"]

array([[788937, 789047, 789157, ..., 809282, 809392, 809502],
[788935, 789045, 789155, ..., 809279, 809389, 809499],
[788932, 789042, 789152, ..., 809276, 809386, 809496],
...,
[788044, 788154, 788264, ..., 808389, 808499, 808609],
[788042, 788152, 788262, ..., 808386, 808496, 808606],
[788039, 788149, 788259, ..., 808383, 808493, 808603]], dtype=int32)

mdio._headers[:]["193"]

array([[938846, 938848, 938851, ..., 939329, 939331, 939334],
[938956, 938958, 938961, ..., 939439, 939441, 939444],
[939066, 939068, 939071, ..., 939549, 939551, 939554],
...,

(continues on next page)

24 Chapter 7. Credits

MDIO

(continued from previous page)

[976455, 976458, 976460, ..., 976938, 976941, 976943],
[976565, 976568, 976570, ..., 977048, 977051, 977053],
[976675, 976678, 976680, ..., 977158, 977161, 977163]], dtype=int32)

or both at he same time:

mdio._headers[:][["189", "193"]]

array([[(788937, 938846), (789047, 938848), (789157, 938851), ...,
(809282, 939329), (809392, 939331), (809502, 939334)],
[(788935, 938956), (789045, 938958), (789155, 938961), ...,
(809279, 939439), (809389, 939441), (809499, 939444)],
[(788932, 939066), (789042, 939068), (789152, 939071), ...,
(809276, 939549), (809386, 939551), (809496, 939554)],
...,
[(788044, 976455), (788154, 976458), (788264, 976460), ...,
(808389, 976938), (808499, 976941), (808609, 976943)],
[(788042, 976565), (788152, 976568), (788262, 976570), ...,
(808386, 977048), (808496, 977051), (808606, 977053)],
[(788039, 976675), (788149, 976678), (788259, 976680), ...,
(808383, 977158), (808493, 977161), (808603, 977163)]],

dtype={'names': ['189', '193'], 'formats': ['<i4', '<i4'], 'offsets': [188, 192],
→˓'itemsize': 232})

As we mentioned before, we can also get specific slices of headers while fetching a slice.

Let’s fetch a crossline, we are still using some previous parameters.

Since crossline is our second dimension, we can put the index in the second mdio[...] axis.

Since MDIO returns the headers as well, we can plot the headers on top of the image.

All headers will be returned, so we can select the X-coordinate at byte 189.

Full headers can be mapped and plotted as well, but we won’t demonstrate that here.

crossline_index = int(mdio.coord_to_index(100, dimensions="crossline"))
xl_mask, xl_headers, xl_data = mdio[:, crossline_index]

vmin, vmax = -2 * std, 2 * std

gs_kw = dict(height_ratios=(1, 5))
fig, ax = plt.subplots(2, 1, gridspec_kw=gs_kw, sharex="all")

ax[0].plot(inlines, xl_headers["189"])

ax[1].pcolormesh(inlines, times, xl_data.T, vmin=vmin, vmax=vmax, cmap="gray_r")
ax[1].invert_yaxis()
ax[1].set_xlabel("inline")
ax[1].set_ylabel("twt (ms)")

plt.suptitle(f"Crossline {100} with header.");

7.2. Get Started in 10 Minutes 25

MDIO

7.2.8 MDIO to SEG-Y Conversion

Finally, let’s demonstrate going back to SEG-Y.

We will use the convenient mdio_to_segy function and write it out as a round-trip file.

from mdio import mdio_to_segy

mdio_to_segy(
mdio_path_or_buffer="filt_mig.mdio",
output_segy_path="filt_mig_roundtrip.sgy",

)

Array shape is (345, 188, 1501)
Setting (dask) chunks from (128, 128, 128) to (128, 128, 1501)

Step 1 / 2 Writing Blocks: 0%| ␣
→˓ | ...

Step 2 / 2 Concat Blocks: 0block [00:00, ?block/s]

26 Chapter 7. Credits

MDIO

7.2.9 Validate Round-Trip SEG-Y File

We can validate if the round-trip SEG-Y file is matching the original using segyio.

Step by step:

• Open original file

• Open round-trip file

• Compare text headers

• Compare binary headers

• Compare 100 random headers and traces

import numpy as np
import segyio

original_fp = segyio.open("filt_mig.sgy", iline=181, xline=185)
roundtrip_fp = segyio.open("filt_mig_roundtrip.sgy", iline=181, xline=185)

Compare text header
assert original_fp.text[0] == roundtrip_fp.text[0]

Compare bin header
assert original_fp.bin == roundtrip_fp.bin

Compare 100 random trace headers and traces
rng = np.random.default_rng()
rand_indices = rng.integers(low=0, high=original_fp.tracecount, size=100)
for idx in rand_indices:

np.testing.assert_equal(original_fp.header[idx], roundtrip_fp.header[idx])
np.testing.assert_equal(original_fp.trace[idx], roundtrip_fp.trace[idx])

original_fp.close()
roundtrip_fp.close()

7.3 Seismic Data Compression

In this page we will be showing compression performance of MDIO.

For demonstration purposes, we will use one of the Volve dataset stacks. The dataset is licensed by Equinor and Volve
License Partners under Equinor Open Data Licence. License document and further information can be found here.

We are using the 3D seismic stack dataset named ST10010ZC11_PZ_PSDM_KIRCH_FAR_D.MIG_FIN.POST_STACK.
3D.JS-017536.segy.

However, for convenience, we renamed it to volve.segy.

Warning: The examples below need the following extra dependencies:

1. Matplotlib for plotting.

2. Scikit-image for calculating metrics.

Please install them before executing using pip or conda.

7.3. Seismic Data Compression 27

https://www.equinor.com/energy/volve-data-sharing
https://matplotlib.org/
https://scikit-image.org/

MDIO

Note: Even though we demonstrate with Volve here, this notebook can be run with any seismic dataset.

If you are new to MDIO we recommend you first look at our quick start guide

from mdio import segy_to_mdio, MDIOReader

7.3.1 Ingestion

We will ingest three files:

1. Lossless mode

2. Lossy mode (with default tolerance)

3. Lossy mode (with more compression, more relaxed tolerance)

Lossless (Default)

segy_to_mdio(
"volve.segy",
"volve.mdio",
(189, 193),
lossless=True,
compression_tolerance=0.01,

)

print("Done.")

Scanning SEG-Y for geometry attributes: 0%| | 0/6 [00:00<?, ?block/s]

Ingesting SEG-Y in 24 chunks: 0%| | 0/24 [00:00<?, ?block/s]

Done.

Lossy Default

Equivalent to tolerance = 0.01.

segy_to_mdio(
"volve.segy",
"volve_lossy.mdio",
(189, 193),
lossless=False,
compression_tolerance=0.01,

)

print("Done.")

28 Chapter 7. Credits

MDIO

Scanning SEG-Y for geometry attributes: 0%| | 0/6 [00:00<?, ?block/s]

Ingesting SEG-Y in 24 chunks: 0%| | 0/24 [00:00<?, ?block/s]

Done.

Lossy+ (A Lot of Compression)

Here we set tolerance = 1. This means all our errors will be comfortably under 1.0.

segy_to_mdio(
"volve.segy",
"volve_lossy_plus.mdio",
(189, 193),
lossless=False,
compression_tolerance=1,

)

print("Done.")

Scanning SEG-Y for geometry attributes: 0%| | 0/6 [00:00<?, ?block/s]

Ingesting SEG-Y in 24 chunks: 0%| | 0/24 [00:00<?, ?block/s]

Done.

Observe Sizes

Since MDIO uses a hierarchical directory structure, we provide a convenience function to get size of it using directory
recursion and getting size.

import os

def get_dir_size(path: str) -> int:
"""Get size of a directory recursively."""
total = 0
with os.scandir(path) as it:

for entry in it:
if entry.is_file():

total += entry.stat().st_size
elif entry.is_dir():

total += get_dir_size(entry.path)
return total

def get_size(path: str) -> int:
"""Get size of a folder or a file."""
if os.path.isfile(path):

(continues on next page)

7.3. Seismic Data Compression 29

MDIO

(continued from previous page)

return os.path.getsize(path)

elif os.path.isdir(path):
return get_dir_size(path)

print(f"SEG-Y:\t{get_size('volve.segy') / 1024 / 1024:.2f} MB")
print(f"MDIO:\t{get_size('volve.mdio') / 1024 / 1024:.2f} MB")
print(f"Lossy:\t{get_size('volve_lossy.mdio') / 1024 / 1024:.2f} MB")
print(f"Lossy+:\t{get_size('volve_lossy_plus.mdio') / 1024 / 1024:.2f} MB")

SEG-Y: 1305.02 MB
MDIO: 998.80 MB
Lossy: 263.57 MB
Lossy+: 52.75 MB

7.3.2 Open Files, and Get Raw Statistics

lossless = MDIOReader("volve.mdio")
lossy = MDIOReader("volve_lossy.mdio")
lossy_plus = MDIOReader("volve_lossy_plus.mdio")

stats = lossless.stats
std = stats["std"]
min_ = stats["min"]
max_ = stats["max"]

7.3.3 Plot Images with Differences

Let’s define some plotting functions for convenience.

Here, we will make two plots showing data for lossy and lossy+ versions.

We will be showing the following subplots for each dataset:

1. Lossless Inline

2. Lossy Inline

3. Difference

4. 1,000x Gained Difference

We will be using ± 3 * standard_deviation of the colorbar ranges.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

vmin = -3 * std
vmax = 3 * std

imshow_kw = dict(vmin=vmin, vmax=vmax, cmap="gray_r", interpolation="bilinear")
(continues on next page)

30 Chapter 7. Credits

MDIO

(continued from previous page)

def attach_colorbar(image, axis):
divider = make_axes_locatable(axis)
cax = divider.append_axes("top", size="2%", pad=0.05)
plt.colorbar(image, cax=cax, orientation="horizontal")
cax.xaxis.set_ticks_position("top")
cax.tick_params(labelsize=8)

def plot_image_and_cbar(data, axis, title):
image = axis.imshow(data.T, **imshow_kw)
attach_colorbar(image, axis)
axis.set_title(title, y=-0.15)

def plot_inlines_with_diff(orig, compressed, title):
fig, ax = plt.subplots(1, 4, sharey="all", sharex="all", figsize=(12, 5))

diff = orig[200] - compressed[200]

plot_image_and_cbar(orig[200], ax[0], "original")
plot_image_and_cbar(compressed[200], ax[1], "lossy")
plot_image_and_cbar(diff, ax[2], "difference")
plot_image_and_cbar(diff * 1_000, ax[3], "1,000x difference")

plt.suptitle(f"{title} ({std=})")
fig.tight_layout()

plt.show()

plot_inlines_with_diff(lossless, lossy, "Default Lossy")
plot_inlines_with_diff(lossless, lossy_plus, "More Lossy")

7.3. Seismic Data Compression 31

MDIO

7.3.4 Calculate Metrics

For image quality, there are some metrics used by the broader image compression community.

In this example we will be using the following four metrics as comparison.

1. PSNR: Peak signal-to-noise ratio for an image. (higher is better)

2. SSIM: Mean structural similarity index between two images. (higher is better, maximum value is 1.0)

3. MSE: Compute the mean-squared error between two images. (lower is better)

4. NRMSE: Normalized root mean-squared error between two images. (lower is better)

For PSNR or SSIM, we use the global dataset range (max - min) as the normalization method.

In image compression community, a PSNR value above 60 dB (decibels) is considered acceptable.

We calculate these metrics on the same inline we show above.

import skimage

def get_metrics(image_true, image_test):
"""Get four metrics"""
psnr = skimage.metrics.peak_signal_noise_ratio(

image_true[200], image_test[200], data_range=max_ - min_
)
ssim = skimage.metrics.structural_similarity(

image_true[200], image_test[200], data_range=max_ - min_
)
mse = skimage.metrics.mean_squared_error(image_true[200], image_test[200])
nrmse = skimage.metrics.normalized_root_mse(image_true[200], image_test[200])

return psnr, ssim, mse, nrmse

(continues on next page)

32 Chapter 7. Credits

MDIO

(continued from previous page)

print("Lossy", get_metrics(lossless, lossy))
print("Lossy+", get_metrics(lossless, lossy_plus))

Lossy (106.69280984265322, 0.9999999784224242, 9.176027503792131e-08, 0.
→˓000330489434736117)
Lossy+ (66.27609586061718, 0.999721336954417, 0.0010100110026414078, 0.0346731484815586)

7.4 Optimizing Access Patterns

7.4.1 Introduction

In this page we will be showing how we can take an existing MDIO and add fast access, lossy, versions of the data in
X/Y/Z cross-sections (slices).

We can re-use the MDIO dataset we created in the Quickstart page. Please run it first.

We will define our compression levels first. We will use this to adjust the quality of the lossy compression.

from enum import Enum

class MdioZfpQuality(float, Enum):
"""Config options for ZFP compression."""

VERY_LOW = 6
LOW = 3
MEDIUM = 1
HIGH = 0.1
VERY_HIGH = 0.01
ULTRA = 0.001

We will use the lower level MDIOAccessor to open the existing file in write mode that allows us to modify its raw
metadata. This can be dangerous, we recommend using only provided tools to avoid data corruption.

We specify the original access pattern of the source data "012"with some parameters like caching. For the rechunking,
we recommend using the single threaded "zarr" backend to avoid race conditions.

We also define a dict for common arguments in rechunking.

from mdio.api.accessor import MDIOAccessor

mdio_path = "filt_mig.mdio"

orig_mdio_cached = MDIOAccessor(
mdio_path_or_buffer=mdio_path,
mode="w",
access_pattern="012",
storage_options=None,
return_metadata=False,
new_chunks=None,
backend="zarr",
memory_cache_size=2**28,

(continues on next page)

7.4. Optimizing Access Patterns 33

MDIO

(continued from previous page)

disk_cache=False,
)

7.4.2 Compression (Lossy)

Now, let’s define our compression level. The compression ratios vary a lot on the data characteristics. However, the
compression levels here are good guidelines that are based on standard deviation of the original data.

We use ZFP’s fixed accuracy mode with a tolerance based on data standard deviation, as mentioned above. For more
ZFP options you can see its documentation.

Empirically, for this dataset, we see the following size reductions (per copy):

• 10 : 1 on VERY_LOW

• 7.5 : 1 on LOW

• 4.5 : 1 on MEDIUM

• 3 : 1 on HIGH

• 2 : 1 on VERY_HIGH

• 1.5 : 1 on ULTRA

from numcodecs import ZFPY
from zfpy import mode_fixed_accuracy

std = orig_mdio_cached.stats["std"] # standard deviation of original data

quality = MdioZfpQuality.LOW
tolerance = quality * std
sample_compressor = ZFPY(mode_fixed_accuracy, tolerance=tolerance)

common_kwargs = {"overwrite": True, "compressor": sample_compressor}

7.4.3 Optimizing IL/XL/Z Independently

In this cell, we will demonstrate how to create IL/XL and Z (two-way-time) optimized versions independently. In the
next section we will do the same with the batch mode where the data only needs to be read into memory once.

In the example below, each rechunking operation will read the data from the original MDIO dataset and discard it. We
did enable 256 MB (2^28 bytes) memory cache above, it will help some, but still not ideal.

from mdio.api.convenience import rechunk

rechunk(orig_mdio_cached, (4, 512, 512), suffix="fast_il", **common_kwargs)
rechunk(orig_mdio_cached, (512, 4, 512), suffix="fast_xl", **common_kwargs)
rechunk(orig_mdio_cached, (512, 512, 4), suffix="fast_z", **common_kwargs)

Rechunking to fast_il: 100%|| 3/3 [00:01<00:00, 1.77chunk/s]
Rechunking to fast_xl: 100%|| 3/3 [00:01<00:00, 1.90chunk/s]
Rechunking to fast_z: 100%|| 3/3 [00:01<00:00, 1.97chunk/s]

34 Chapter 7. Credits

MDIO

We can now open the original MDIO dataset and the fast access patterns. When printing the chunks attribute, we see
the original one first, and the subsequent ones show data is rechunked with ZFP compression.

from mdio import MDIOReader

orig_mdio = MDIOReader(mdio_path)
il_mdio = MDIOReader(mdio_path, access_pattern="fast_il")
xl_mdio = MDIOReader(mdio_path, access_pattern="fast_xl")
z_mdio = MDIOReader(mdio_path, access_pattern="fast_z")

print(orig_mdio.chunks, orig_mdio._traces.compressor)
print(il_mdio.chunks, il_mdio._traces.compressor)
print(xl_mdio.chunks, xl_mdio._traces.compressor)
print(z_mdio.chunks, z_mdio._traces.compressor)

(64, 64, 64) Blosc(cname='zstd', clevel=5, shuffle=SHUFFLE, blocksize=0)
(4, 187, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 4, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 187, 4) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)

We can now compare the sizes of the compressed representations to original.

Below commands are for UNIX based operating systems and won’t work on Windows.

!du -hs {mdio_path}/data/chunked_012
!du -hs {mdio_path}/data/chunked_fast_il
!du -hs {mdio_path}/data/chunked_fast_xl
!du -hs {mdio_path}/data/chunked_fast_z

149M filt_mig.mdio/data/chunked_012
21M filt_mig.mdio/data/chunked_fast_il
20M filt_mig.mdio/data/chunked_fast_xl
21M filt_mig.mdio/data/chunked_fast_z

Comparing local disk read speeds for inlines:

%timeit orig_mdio[175] # 3d chunked
%timeit il_mdio[175] # inline optimized

31.1 ms ± 825 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
3.6 ms ± 52.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

For crosslines:

%timeit orig_mdio[:, 90] # 3d chunked
%timeit xl_mdio[:, 90] # xline optimized

65.3 ms ± 705 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
8.76 ms ± 353 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Finally, for Z (time-slices):

%timeit orig_mdio[..., 751] # 3d chunked
%timeit z_mdio[..., 751] # time-slice optimized

7.4. Optimizing Access Patterns 35

MDIO

6.36 ms ± 185 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
872 µs ± 8.24 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

We can check the subjective quality of the compression by visually comparing two inlines. Similar to the example we
had in the Compression page.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

vmin = -3 * std
vmax = 3 * std

imshow_kw = dict(vmin=vmin, vmax=vmax, cmap="gray_r", interpolation="bilinear", aspect=
→˓"auto")

def attach_colorbar(image, axis):
divider = make_axes_locatable(axis)
cax = divider.append_axes("top", size="2%", pad=0.05)
plt.colorbar(image, cax=cax, orientation="horizontal")
cax.xaxis.set_ticks_position("top")
cax.tick_params(labelsize=8)

def plot_image_and_cbar(data, axis, title):
image = axis.imshow(data.T, **imshow_kw)
attach_colorbar(image, axis)
axis.set_title(title, y=-0.15)

def plot_inlines_with_diff(orig, compressed, title):
fig, ax = plt.subplots(1, 4, sharey="all", sharex="all", figsize=(8, 5))

diff = orig[200] - compressed[200]

plot_image_and_cbar(orig[200], ax[0], "original")
plot_image_and_cbar(compressed[200], ax[1], "lossy")
plot_image_and_cbar(diff, ax[2], "difference")
plot_image_and_cbar(diff * 1_000, ax[3], "1,000x difference")

plt.suptitle(f"{title} ({std=})")
fig.tight_layout()

plt.show()

plot_inlines_with_diff(orig_mdio, il_mdio, "")

36 Chapter 7. Credits

MDIO

In conclusion, we show that by generating optimized, lossy compressed copies of the data for certain access patterns
yield big performance benefits when reading the data.

The differences are orders of magnitude larger on big datasets and remote stores, given available network bandwidth.

7.4.4 Optimizing in Batch

Now that we understand how rechunking and lossy compression works, we will demonstrate how to do this in batches.

The benefit of doing the batched processing is that the dataset gets read once. This is especially important if the original
MDIO resides in a remote store like AWS S3, or Google Cloud’s GCS.

Note that we not are overwriting the old optimized chunks, just creating new ones with the suffix 2 to demonstrate we
can create as many version of the original data as we want.

from mdio.api.convenience import rechunk_batch

rechunk_batch(
orig_mdio_cached,
chunks_list=[(4, 512, 512), (512, 4, 512), (512, 512, 4)],
suffix_list=["fast_il2", "fast_xl2", "fast_z2"],
**common_kwargs,

)

Rechunking to fast_il2,fast_xl2,fast_z2: 100%|| 3/3 [00:05<00:00, 1.84s/chunk]

from mdio import MDIOReader

(continues on next page)

7.4. Optimizing Access Patterns 37

MDIO

(continued from previous page)

orig_mdio = MDIOReader(mdio_path)
il2_mdio = MDIOReader(mdio_path, access_pattern="fast_il2")
xl2_mdio = MDIOReader(mdio_path, access_pattern="fast_xl2")
z2_mdio = MDIOReader(mdio_path, access_pattern="fast_z2")

print(orig_mdio.chunks, orig_mdio._traces.compressor)
print(il_mdio.chunks, il2_mdio._traces.compressor)
print(xl_mdio.chunks, xl2_mdio._traces.compressor)
print(z_mdio.chunks, z2_mdio._traces.compressor)

(64, 64, 64) Blosc(cname='zstd', clevel=5, shuffle=SHUFFLE, blocksize=0)
(4, 187, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 4, 512) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)
(345, 187, 4) ZFPY(mode=4, tolerance=2.7916183359718256, rate=-1, precision=-1)

7.5 Usage

7.5.1 Ingestion and Export

The following example shows how to minimally ingest a 3D seismic stack into a local MDIO file. Only one lossless
copy will be made.

There are many more options, please see the CLI Reference.

$ mdio segy import \
path_to_segy_file.segy \
path_to_mdio_file.mdio \
-loc 181,185 \
-names inline,crossline

To export the same file back to SEG-Y format, the following command should be executed.

$ mdio segy export \
path_to_mdio_file.mdio \
path_to_segy_file.segy

7.5.2 Cloud Connection Strings

MDIO supports I/O on major cloud service providers. The cloud I/O capabilities are supported using the fsspec and
its specialized version for:

• Amazon Web Services (AWS S3) - s3fs

• Google Cloud Provider (GCP GCS) - gcsfs

• Microsoft Azure (Datalake Gen2) - adlfs

Any other file-system supported by fsspec will also be supported by MDIO. However, we will focus on the major
providers here.

The protocols that help choose a backend (i.e. s3://, gs://, or az://) can be passed prepended to the MDIO path.

38 Chapter 7. Credits

https://filesystem-spec.readthedocs.io/
https://s3fs.readthedocs.io
https://gcsfs.readthedocs.io
https://github.com/fsspec/adlfs

MDIO

The connection string can be passed to the command-line-interface (CLI) using the -storage, --storage-options
flag as a JSON string or the Python API with the storage_options keyword argument as a Python dictionary.

Warning: On Windows clients, JSON strings are passed to the CLI with a special escape character.

For instance a JSON string:

{"key": "my_super_private_key", "secret": "my_super_private_secret"}

must be passed with an escape character \ for inner quotes as:

"{\"key\": \"my_super_private_key\", \"secret\": \"my_super_private_secret\"}"

whereas, on Linux bash this works just fine:

'{"key": "my_super_private_key", "secret": "my_super_private_secret"}'

If this done incorrectly, you will get an invalid JSON string error from the CLI.

Amazon Web Services

Credentials can be automatically fetched from pre-authenticated AWS CLI. See here for the order s3fs checks them.
If it is not pre-authenticated, you need to pass --storage-options.

Prefix:
s3://

Storage Options:
key: The auth key from AWS
secret: The auth secret from AWS

Using UNIX:

mdio segy import \
path/to/my.segy \
s3://bucket/prefix/my.mdio \
--header-locations 189,193 \
--storage-options '{"key": "my_super_private_key", "secret": "my_super_private_secret"}

→˓'

Using Windows (note the extra escape characters \):

mdio segy import \
path/to/my.segy \
s3://bucket/prefix/my.mdio \
--header-locations 189,193 \
--storage-options "{\"key\": \"my_super_private_key\", \"secret\": \"my_super_private_

→˓secret\"}"

7.5. Usage 39

https://s3fs.readthedocs.io/en/latest/index.html#credentials

MDIO

Google Cloud Provider

Credentials can be automatically fetched from pre-authenticated gcloud CLI. See here for the order gcsfs checks
them. If it is not pre-authenticated, you need to pass --storage-options.

GCP uses service accounts to pass authentication information to APIs.

Prefix:
gs:// or gcs://

Storage Options:
token: The service account JSON value as string, or local path to JSON

Using a service account:

mdio segy import \
path/to/my.segy \
gs://bucket/prefix/my.mdio \
--header-locations 189,193 \
--storage-options '{"token": "~/.config/gcloud/application_default_credentials.json"}'

Using browser to populate authentication:

mdio segy import \
path/to/my.segy \
gs://bucket/prefix/my.mdio \
--header-locations 189,193 \
--storage-options '{"token": "browser"}'

Microsoft Azure

There are various ways to authenticate with Azure Data Lake (ADL). See here for some details. If ADL is not pre-
authenticated, you need to pass --storage-options.

Prefix:
az:// or abfs://

Storage Options:
account_name: Azure Data Lake storage account name
account_key: Azure Data Lake storage account access key

mdio segy import \
path/to/my.segy \
az://bucket/prefix/my.mdio \
--header-locations 189,193 \
--storage-options '{"account_name": "myaccount", "account_key": "my_super_private_key"}

→˓'

40 Chapter 7. Credits

https://gcsfs.readthedocs.io/en/latest/#credentials
https://cloud.google.com/iam/docs/service-accounts
https://github.com/fsspec/adlfs#details

MDIO

Advanced Cloud Features

There are additional functions provided by fsspec. These are advanced features and we refer the user to read fsspec
documentation. Some useful examples are:

• Caching Files Locally

• Remote Write Caching

• File Buffering and random access

• Mount anything with FUSE

Note: When combining advanced protocols like simplecache and using a remote store like s3 the URL can be
chained like simplecache::s3://bucket/prefix/file.mdio. When doing this the --storage-options argu-
ment must explicitly state parameters for the cloud backend and the extra protocol. For the above example it would
look like this:

{
"s3": {
"key": "my_super_private_key",
"secret": "my_super_private_secret"

},
"simplecache": {
"cache_storage": "/custom/temp/storage/path"

}
}

In one line:

{"s3": {"key": "my_super_private_key", "secret": "my_super_private_secret"}, "simplecache
→˓": {"cache_storage": "/custom/temp/storage/path"}

7.5.3 CLI Reference

MDIO provides a convenient command-line-interface (CLI) to do various tasks.

For each command / subcommand you can provide --help argument to get information about usage.

mdio

Welcome to MDIO!

MDIO is an open source, cloud-native, and scalable storage engine for various types of energy data.

MDIO supports importing or exporting various data containers, hence we allow plugins as subcommands.

From this main command, we can see the MDIO version.

mdio [OPTIONS] COMMAND [ARGS]...

7.5. Usage 41

https://filesystem-spec.readthedocs.io/en/latest/features.html

MDIO

Options

--version

Show the version and exit.

copy

Copy a MDIO dataset to anpther MDIO dataset.

Can also copy with empty data to be filled later. See excludes and includes parameters.

More documentation about excludes and includes can be found in Zarr’s documentation in zarr.convenience.copy_store.

mdio copy [OPTIONS] SOURCE_MDIO_PATH TARGET_MDIO_PATH

Options

-access, --access-pattern <access_pattern>

Access pattern of the file

Default
012

-exc, --excludes <excludes>

Data to exclude during copy, like chunked_012. The data values won’t be copied but an empty array will be
created. If blank, it copies everything.

-inc, --includes <includes>

Data to include during copy, like trace_headers. If not specified, and certain data is excluded, it will not copy
headers. To preserve headers, specify trace_headers. If left blank, it will copy everything except what is specified
in the ‘excludes’ parameter.

-storage, --storage-options <storage_options>

Custom storage options for cloud backends

-overwrite, --overwrite

Flag to overwrite if mdio file if it exists

Default
False

Arguments

SOURCE_MDIO_PATH

Required argument

TARGET_MDIO_PATH

Required argument

42 Chapter 7. Credits

MDIO

info

Provide information on a MDIO dataset.

By default, this returns human-readable information about the grid and stats for the dataset. If output-format is set to
json then a json is returned to facilitate parsing.

mdio info [OPTIONS] MDIO_PATH

Options

-access, --access-pattern <access_pattern>

Access pattern of the file

Default
012

-format, --output-format <output_format>

Output format. Pretty console or JSON.

Default
pretty

Options
pretty | json

Arguments

MDIO_PATH

Required argument

segy

MDIO and SEG-Y conversion utilities. Below is general information about the SEG-Y format and MDIO features. For
import or export specific functionality check the import or export modules:

mdio segy import –help
mdio segy export –help

MDIO can import SEG-Y files to a modern, chunked format.

The SEG-Y format is defined by the Society of Exploration Geophysicists as a data transmission format and has its
roots back to 1970s. There are currently multiple revisions of the SEG-Y format.

MDIO can unravel and index any SEG-Y file that is on a regular grid. There is no limitation to dimensionality of the
data, as long as it can be represented on a regular grid. Most seismic surveys are on a regular grid of unique shot/receiver
IDs or are imaged on regular CDP or INLINE/CROSSLINE grids.

The SEG-Y headers are used as identifiers to take the flattened SEG-Y data and convert it to the multi-dimensional
tensor representation. An example of ingesting a 3-D Post-Stack seismic data can be though as the following, per the
SEG-Y Rev1 standard:

7.5. Usage 43

MDIO

–header-names inline,crossline
–header-locations 189,193
–header-types int32,int32

Our recommended chunk sizes are:
(Based on GCS benchmarks)
3D: 64 x 64 x 64
2D: 512 x 512

The 4D+ datasets chunking recommendation depends on the type of 4D+ dataset (i.e. SHOT vs CDP data will have
different chunking).

MDIO also import or export big and little endian coded IBM or IEEE floating point formatted SEG-Y files. MDIO
can also build a grid from arbitrary header locations for indexing. However, the headers are stored as the SEG-Y Rev
1 after ingestion.

mdio segy [OPTIONS] COMMAND [ARGS]...

export

Export MDIO file to SEG-Y.

SEG-Y format is explained in the “segy” group of the command line interface. To see additional information run:

mdio segy –help

MDIO allows exporting multidimensional seismic data back to the flattened seismic format SEG-Y, to be used in data
transmission.

The input headers are preserved as is, and will be transferred to the output file.

The user has control over the endianness, and the floating point data type. However, by default we export as Big-Endian
IBM float, per the SEG-Y format’s default.

The input MDIO can be local or cloud based. However, the output SEG-Y will be generated locally.

mdio segy export [OPTIONS] MDIO_FILE SEGY_PATH

Options

-access, --access-pattern <access_pattern>

Access pattern of the file

Default
012

-format, --segy-format <segy_format>

SEG-Y sample format

Default
ibm32

Options
ibm32 | ieee32

44 Chapter 7. Credits

MDIO

-storage, --storage-options <storage_options>

Custom storage options for cloud backends.

-endian, --endian <endian>

Endianness of the SEG-Y file

Default
big

Options
little | big

Arguments

MDIO_FILE

Required argument

SEGY_PATH

Required argument

import

Ingest SEG-Y file to MDIO.

SEG-Y format is explained in the “segy” group of the command line interface. To see additional information run:

mdio segy –help

MDIO allows ingesting flattened seismic surveys in SEG-Y format into a multidimensional tensor that represents the
correct geometry of the seismic dataset.

The SEG-Y file must be on disk, MDIO currently does not support reading SEG-Y directly from the cloud object store.

The output MDIO file can be local or on the cloud. For local files, a UNIX or Windows path is sufficient. However, for
cloud stores, an appropriate protocol must be provided. Some examples:

File Path Patterns:

If we are working locally: –input_segy_path local_seismic.segy –output-mdio-path local_seismic.mdio

If we are working on the cloud on Amazon Web Services: –input_segy_path local_seismic.segy –output-
mdio-path s3://bucket/local_seismic.mdio

If we are working on the cloud on Google Cloud: –input_segy_path local_seismic.segy –output-mdio-path
gs://bucket/local_seismic.mdio

If we are working on the cloud on Microsoft Azure: –input_segy_path local_seismic.segy –output-mdio-
path abfs://bucket/local_seismic.mdio

The SEG-Y headers for indexing must also be specified. The index byte locations (starts from 1) are the minimum
amount of information needed to index the file. However, we suggest giving names to the index dimensions, and if
needed providing the header types if they are not standard. By default, all header entries are assumed to be 4-byte long
(int32).

The chunk size depends on the data type, however, it can be chosen to accommodate any workflow’s access patterns.
See examples below for some common use cases.

By default, the data is ingested with LOSSLESS compression. This saves disk space in the range of 20% to 40%.
MDIO also allows data to be compressed using the ZFP compressor’s fixed accuracy lossy compression. If lossless pa-
rameter is set to False and MDIO was installed using the lossy extra; then the data will be compressed to approximately

7.5. Usage 45

MDIO

30% of its original size and will be perceptually lossless. The compression amount can be adjusted using the option
compression_tolerance (float). Values less than 1 gives good results. The higher the value, the more compression, but
will introduce artifacts. The default value is 0.01 tolerance, however we get good results up to 0.5; where data is almost
compressed to 10% of its original size. NOTE: This assumes data has amplitudes normalized to have approximately
standard deviation of 1. If dataset has values smaller than this tolerance, a lot of loss may occur.

Usage:

Below are some examples of ingesting standard SEG-Y files per the SEG-Y Revision 1 and 2 formats.

3D Seismic Post-Stack: Chunks: 128 inlines x 128 crosslines x 128 samples –header-locations 189,193
–header-names inline,crossline

3D Seismic Imaged Pre-Stack Gathers: Chunks: 16 inlines x 16 crosslines x 16 offsets x 512 samples
–header-locations 189,193,37 –header-names inline,crossline,offset –chunk-size 16,16,16,512

2D Seismic Shot Data (Byte Locations Vary): Chunks: 16 shots x 256 channels x 512 samples –header-
locations 9,13 –header-names shot,chan –chunk-size 16,256,512

3D Seismic Shot Data (Byte Locations Vary): Let’s assume streamer number is at byte 213 as a 2-byte
integer field. Chunks: 8 shots x 2 cables x 256 channels x 512 samples –header-locations 9,213,13 –header-
names shot,cable,chan –header-types int32,int16,int32 –chunk-size 8,2,256,512

We can override the dataset grid by the grid_overrides parameter. This allows us to ingest files that don’t conform to
the true geometry of the seismic acquisition.

For example if we are ingesting 3D seismic shots that don’t have a cable number and channel numbers are sequential
(i.e. each cable doesn’t start with channel number 1; we can tell MDIO to ingest this with the correct geometry by
calculating cable numbers and wrapped channel numbers. Note the missing byte location and type for the “cable”
index.

Usage:
3D Seismic Shot Data (Byte Locations Vary): Let’s assume streamer number does not exist but there are
800 channels per cable. Chunks: 8 shots x 2 cables x 256 channels x 512 samples –header-locations
9,None,13 –header-names shot,cable,chan –header-types int32,None,int32 –chunk-size 8,2,256,512 –grid-
overrides ‘{“ChannelWrap”: True, “ChannelsPerCable”: 800,

“CalculateCable”: True}’

If we do have cable numbers in the headers, but channels are still sequential (aka. unwrapped), we can still
ingest it like this. –header-locations 9,213,13 –header-names shot,cable,chan –header-types int32,int16,int32
–chunk-size 8,2,256,512 –grid-overrides ‘{“ChannelWrap”:True, “ChannelsPerCable”: 800}’ For shot gathers
with channel numbers and wrapped channels, no grid overrides are necessary.

In cases where the user does not know if the input has unwrapped channels but desires to store with wrapped
channel index use: –grid-overrides ‘{“AutoChannelWrap”: True}’

For cases with no well-defined trace header for indexing a NonBinned grid override is provided.This creates the
index and attributes an incrementing integer to the trace for the index based on first in first out. For example a
CDP and Offset keyed file might have a header for offset as real world offset which would result in a very sparse
populated index. Instead, the following override will create a new index from 1 to N, where N is the number of
offsets within a CDP ensemble. The index to be auto generated is called “trace”. Note the required “chunksize”
parameter in the grid override. This is due to the non-binned ensemble chunksize is irrelevant to the index di-
mension chunksizes and has to be specified in the grid override itself. Note the lack of offset, only indexing CDP,
providing CDP header type, and chunksize for only CDP and Sample dimension. The chunksize for non-binned
dimension is in the grid overrides as described above. The below configuration will yield 1MB chunks. –header-
locations 21 –header-names cdp –header-types int32 –chunk-size 4,1024 –grid-overrides ‘{“NonBinned”: True,
“chunksize”: 64}’

A more complicated case where you may have a 5D dataset that is not binned in Offset and Azimuth directions can
be ingested like below. However, the Offset and Azimuth dimensions will be combined to “trace” dimension.

46 Chapter 7. Credits

MDIO

The below configuration will yield 1MB chunks. –header-locations 189,193 –header-names inline,crossline
–header-types int32,int32 –chunk-size 4,4,1024 –grid-overrides ‘{“NonBinned”: True, “chunksize”: 16}’

For dataset with expected duplicate traces we have the following parameterization. This will use the same logic as
NonBinned with a fixed chunksize of 1. The other keys are still important. The below example allows multiple
traces per receiver (i.e. reshoot). –header-locations 9,213,13 –header-names shot,cable,chan –header-types
int32,int16,int32 –chunk-size 8,2,256,512 –grid-overrides ‘{“HasDuplicates”: True}’

mdio segy import [OPTIONS] SEGY_PATH MDIO_PATH

Options

-loc, --header-locations <header_locations>

Required Byte locations of the index attributes in SEG-Y trace header.

-types, --header-types <header_types>

Data types of the index attributes in SEG-Y trace header.

-names, --header-names <header_names>

Names of the index attributes

-chunks, --chunk-size <chunk_size>

Custom chunk size for bricked storage

-endian, --endian <endian>

Endianness of the SEG-Y file

Default
big

Options
little | big

-lossless, --lossless <lossless>

Toggle lossless, and perceptually lossless compression

Default
True

-tolerance, --compression-tolerance <compression_tolerance>

Lossy compression tolerance in ZFP.

Default
0.01

-storage, --storage-options <storage_options>

Custom storage options for cloud backends

-overwrite, --overwrite

Flag to overwrite if mdio file if it exists

Default
False

-grid-overrides, --grid-overrides <grid_overrides>

Option to add grid overrides.

7.5. Usage 47

MDIO

Arguments

SEGY_PATH

Required argument

MDIO_PATH

Required argument

7.6 Reference

7.6.1 Readers / Writers

MDIO accessor APIs.

class mdio.api.accessor.MDIOAccessor(mdio_path_or_buffer, mode, access_pattern, storage_options,
return_metadata, new_chunks, backend, memory_cache_size,
disk_cache)

Accessor class for MDIO files.

The accessor can be used to read and write MDIO files. It allows you to open an MDIO file in several mode and
access_pattern combinations.

Access pattern defines the dimensions that are chunked. For instance if you have a 3-D array that is chunked in
every direction (i.e. a 3-D seismic stack consisting of inline, crossline, and sample dimensions) its access pattern
would be “012”. If it was only chunked in the first two dimensions (i.e. seismic inline and crossline), it would
be “01”.

By default, MDIO will try to open with “012” access pattern, and will raise an error if that pattern doesn’t exist.

After dataset is opened, when the accessor is sliced it will either return just seismic trace data as a Numpy array
or a tuple of live mask, headers, and seismic trace in Numpy based on the parameter return_metadata.

Regarding object store access, if the user credentials have been set system-wide on local machine or VM; there
is no need to specify credentials. However, the storage_options option allows users to specify credentials for the
store that is being accessed. Please see the fsspec documentation for configuring storage options.

MDIO currently supports Zarr and Dask backends. The Zarr backend is useful for reading small amounts of data
with minimal overhead. However, by utilizing the Dask backend with a larger chunk size using the new_chunks
argument, the data can be read in parallel using a Dask LocalCluster or a distributed Cluster.

The accessor also allows users to enable fsspec caching. These are particularly useful when we are accessing the
data from a high-latency store such as object stores, or mounted network drives with high latency. We can use
the disk_cache option to fetch chunks the local temporary directory for faster repetitive access. We can also turn
on the Least Recently Used (LRU) cache by using the memory_cache option. It has to be specified in bytes.

Parameters

• mdio_path_or_buffer (str) – Store URL for MDIO file. This can be either on a local
disk, or a cloud object store.

• mode (str) – Read or read/write mode. The file must exist. Options are in {‘r’, ‘r+’, ‘w’}. ‘r’
is read only, ‘r+’ is append mode where only existing arrays can be modified, ‘w’ is similar
to ‘r+’ but rechunking or other file-wide operations are allowed.

• access_pattern (str) – Chunk access pattern, optional. Default is “012”. Examples:
‘012’, ‘01’, ‘01234’.

48 Chapter 7. Credits

MDIO

• storage_options (dict | None) – Options for the storage backend. By default, system-
wide credentials will be used. If system-wide credentials are not set and the source is not
public, an authentication error will be raised by the backend.

• return_metadata (bool) – Flag for returning live mask, headers, and traces or just the
trace data. Default is False, which means just trace data will be returned.

• new_chunks (tuple[int, ...] | None) – Chunk sizes used in Dask backend. Ignored
for Zarr backend. By default, the disk-chunks will be used. However, if we want to stream
groups of chunks to a Dask worker, we can rechunk here. Then each Dask worker can asyn-
chronously fetch multiple chunks before working.

• backend (str) – Backend selection, optional. Default is “zarr”. Must be in {‘zarr’, ‘dask’}.

• memory_cache_size (int) – Maximum, in memory, least recently used (LRU) cache size
in bytes.

• disk_cache (bool) – Disk cache implemented by fsspec, optional. Default is False, which
turns off disk caching. See simplecache from fsspec documentation for more details.

Raises
MDIONotFoundError – If the MDIO file can not be opened.

Notes

The combination of the Dask backend and caching schemes are experimental. This configuration may cause
unexpected memory usage and duplicate data fetching.

Examples

Assuming we ingested my_3d_seismic.segy as my_3d_seismic.mdio we can open the file in read-only mode like
this.

>>> from mdio import MDIOReader
>>>
>>>
>>> mdio = MDIOReader("my_3d_seismic.mdio")

This will open the file with the lazy Zarr backend. To access a specific inline, crossline, or sample index we can
do:

>>> inline = mdio[15] # get the 15th inline
>>> crossline = mdio[:, 15] # get the 50th crossline
>>> samples = mdio[..., 250] # get the 250th sample slice

The above will variables will be Numpy arrays of the relevant trace data. If we want to retreive the live mask and
trace headers for our sliding we need to open the file with the return_metadata option.

>>> mdio = MDIOReader("my_3d_seismic.mdio", return_metadata=True)

Then we can fetch the data like this (for inline):

>>> il_live, il_headers, il_traces = mdio[15]

Since MDIOAccessor returns a tuple with these three Numpy arrays, we can directly unpack it and use it further
down our code.

7.6. Reference 49

MDIO

Accessor initialization function.

coord_to_index(*args, dimensions=None)
Convert dimension coordinate to zero-based index.

The coordinate labels of the array dimensions are converted to zero-based indices. For instance if we have
an inline dimension like this:

[10, 20, 30, 40, 50]

then the indices would be:

[0, 1, 2, 3, 4]

This method converts from coordinate labels of a dimension to equivalent indices.

Multiple dimensions can be queried at the same time, see the examples.

Parameters

• *args – Variable length argument queries. # noqa: RST213

• dimensions (str | list[str] | None) – Name of the dimensions to query. If not
provided, it will query all dimensions in the grid and will require len(args) == grid.ndim

Returns
Zero-based indices of coordinates. Each item in result corresponds to indicies of that dimen-
sion

Raises

• ShapeError – if number of queries don’t match requested dimensions.

• ValueError – if requested coordinates don’t exist.

Return type
tuple[ndarray[Any, dtype[int]], . . .]

Examples

Opening an MDIO file.

>>> from mdio import MDIOReader
>>>
>>>
>>> mdio = MDIOReader("path_to.mdio")
>>> mdio.coord_to_index([10, 7, 15], dimensions='inline')
array([8, 5, 13], dtype=uint16)

>>> ils, xls = [10, 7, 15], [5, 10]
>>> mdio.coord_to_index(ils, xls, dimensions=['inline', 'crossline'])
(array([8, 5, 13], dtype=uint16), array([3, 8], dtype=uint16))

With the above indices, we can slice the data:

>>> mdio[ils] # only inlines
>>> mdio[:, xls] # only crosslines
>>> mdio[ils, xls] # intersection of the lines

50 Chapter 7. Credits

MDIO

Note that some fancy-indexing may not work with Zarr backend. The Dask backend is more flexible when
it comes to indexing.

If we are querying all dimensions of a 3D array, we can omit the dimensions argument.

>>> mdio.coord_to_index(10, 5, [50, 100])
(array([8], dtype=uint16),
array([3], dtype=uint16),
array([25, 50], dtype=uint16))

copy(dest_path_or_buffer, excludes='', includes='', storage_options=None, overwrite=False)
Makes a copy of an MDIO file with or without all arrays.

Refer to mdio.api.convenience.copy for full documentation.

Parameters

• dest_path_or_buffer (str) – Destination path. Could be any FSSpec mapping.

• excludes (str) – Data to exclude during copy. i.e. chunked_012. The raw data won’t be
copied, but it will create an empty array to be filled. If left blank, it will copy everything.

• includes (str) – Data to include during copy. i.e. trace_headers. If this is not specified,
and certain data is excluded, it will not copy headers. If you want to preserve headers,
specify trace_headers. If left blank, it will copy everything except specified in excludes
parameter.

• storage_options (dict | None) – Storage options for the cloud storage backend. De-
fault is None (will assume anonymous).

• overwrite (bool) – Overwrite destination or not.

property binary_header: dict

Get seismic binary header metadata.

property chunks: tuple[int, ...]

Get dataset chunk sizes.

property live_mask: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str |
bytes | _NestedSequence[bool | int | float | complex | str | bytes] | Array

Get live mask (i.e. not-null value mask).

property n_dim: int

Get number of dimensions for dataset.

property shape: tuple[int, ...]

Get shape of dataset.

property stats: dict

Get global statistics like min/max/rms/std.

property text_header: list

Get seismic text header.

property trace_count: int

Get trace count from seismic MDIO.

7.6. Reference 51

MDIO

class mdio.api.accessor.MDIOReader(mdio_path_or_buffer, access_pattern='012', storage_options=None,
return_metadata=False, new_chunks=None, backend='zarr',
memory_cache_size=0, disk_cache=False)

Read-only accessor for MDIO files.

For detailed documentation see MDIOAccessor.

Parameters

• mdio_path_or_buffer (str) – Store URL for MDIO file. This can be either on a local
disk, or a cloud object store.

• access_pattern (str) – Chunk access pattern, optional. Default is “012”. Examples:
‘012’, ‘01’, ‘01234’.

• storage_options (dict) – Options for the storage backend. By default, system-wide cre-
dentials will be used. If system-wide credentials are not set and the source is not public, an
authentication error will be raised by the backend.

• return_metadata (bool) – Flag for returning live mask, headers, and traces or just the
trace data. Default is False, which means just trace data will be returned.

• new_chunks (tuple[int, ...]) – Chunk sizes used in Dask backend. Ignored for Zarr
backend. By default, the disk-chunks will be used. However, if we want to stream groups of
chunks to a Dask worker, we can rechunk here. Then each Dask worker can asynchronously
fetch multiple chunks before working.

• backend (str) – Backend selection, optional. Default is “zarr”. Must be in {‘zarr’, ‘dask’}.

• memory_cache_size (int) – Maximum, in memory, least recently used (LRU) cache size
in bytes.

• disk_cache (bool) – Disk cache implemented by fsspec, optional. Default is False, which
turns off disk caching. See simplecache from fsspec documentation for more details.

Initialize super class with r permission.

class mdio.api.accessor.MDIOWriter(mdio_path_or_buffer, access_pattern='012', storage_options=None,
return_metadata=False, new_chunks=None, backend='zarr',
memory_cache_size=0, disk_cache=False)

Writable accessor for MDIO files.

For detailed documentation see MDIOAccessor.

Parameters

• mdio_path_or_buffer (str) – Store URL for MDIO file. This can be either on a local
disk, or a cloud object store.

• access_pattern (str) – Chunk access pattern, optional. Default is “012”. Examples:
‘012’, ‘01’, ‘01234’.

• storage_options (dict) – Options for the storage backend. By default, system-wide cre-
dentials will be used. If system-wide credentials are not set and the source is not public, an
authentication error will be raised by the backend.

• return_metadata (bool) – Flag for returning live mask, headers, and traces or just the
trace data. Default is False, which means just trace data will be returned.

• new_chunks (tuple[int, ...]) – Chunk sizes used in Dask backend. Ignored for Zarr
backend. By default, the disk-chunks will be used. However, if we want to stream groups of
chunks to a Dask worker, we can rechunk here. Then each Dask worker can asynchronously
fetch multiple chunks before working.

52 Chapter 7. Credits

MDIO

• backend (str) – Backend selection, optional. Default is “zarr”. Must be in {‘zarr’, ‘dask’}.

• memory_cache_size (int) – Maximum, in memory, least recently used (LRU) cache size
in bytes.

• disk_cache (bool) – Disk cache implemented by fsspec, optional. Default is False, which
turns off disk caching. See simplecache from fsspec documentation for more details.

Initialize super class with r+ permission.

7.6.2 Data Converters

Seismic Data

Note: By default, the SEG-Y ingestion tool uses Python’s multiprocessing to speed up parsing the data. This almost
always requires a __main__ guard on any other Python code that is executed directly like python file.py. When
running inside Jupyter, this is NOT needed.

1 if __name__ == "__main__":
2 segy_to_mdio(...)

When the CLI is invoked, this is already handled.

See the official multiprocessing documentation here and here.

Conversion from SEG-Y to MDIO.

mdio.converters.segy.segy_to_mdio(segy_path, mdio_path_or_buffer, index_bytes, index_names=None,
index_types=None, chunksize=None, endian='big', lossless=True,
compression_tolerance=0.01, storage_options=None, overwrite=False,
grid_overrides=None)

Convert SEG-Y file to MDIO format.

MDIO allows ingesting flattened seismic surveys in SEG-Y format into a multidimensional tensor that represents
the correct geometry of the seismic dataset.

The SEG-Y file must be on disk, MDIO currently does not support reading SEG-Y directly from the cloud object
store.

The output MDIO file can be local or on the cloud. For local files, a UNIX or Windows path is sufficient.
However, for cloud stores, an appropriate protocol must be provided. See examples for more details.

The SEG-Y headers for indexing must also be specified. The index byte locations (starts from 1) are the minimum
amount of information needed to index the file. However, we suggest giving names to the index dimensions, and
if needed providing the header lengths if they are not standard. By default, all header entries are assumed to be
4-byte long.

The chunk size depends on the data type, however, it can be chosen to accommodate any workflow’s access
patterns. See examples below for some common use cases.

By default, the data is ingested with LOSSLESS compression. This saves disk space in the range of 20% to 40%.
MDIO also allows data to be compressed using the ZFP compressor’s fixed rate lossy compression. If lossless
parameter is set to False and MDIO was installed using the lossy extra; then the data will be compressed to
approximately 30% of its original size and will be perceptually lossless. The compression ratio can be adjusted
using the option compression_ratio (integer). Higher values will compress more, but will introduce artifacts.

Parameters

7.6. Reference 53

https://docs.python.org/3/library/multiprocessing.html#the-process-class
https://docs.python.org/3/library/multiprocessing.html#multiprocessing-programming

MDIO

• segy_path (str) – Path to the input SEG-Y file

• mdio_path_or_buffer (str) – Output path for MDIO file

• index_bytes (Sequence[int]) – Tuple of the byte location for the index attributes

• index_names (Sequence[str] | None) – Tuple of the index names for the index at-
tributes

• index_types (Sequence[str] | None) – Tuple of the data-types for the index attributes.
Must be in {“int16, int32, float16, float32, ibm32”} Default is 4-byte integers for each index
key.

• chunksize (Sequence[int] | None) – Override default chunk size, which is (64, 64, 64)
if 3D, and (512, 512) for 2D.

• endian (str) – Endianness of the input SEG-Y. Rev.2 allows little endian. Default is ‘big’.
Must be in {“big”, “little”}

• lossless (bool) – Lossless Blosc with zstandard, or ZFP with fixed precision.

• compression_tolerance (float) – Tolerance ZFP compression, optional. The fixed ac-
curacy mode in ZFP guarantees there won’t be any errors larger than this value. The default
is 0.01, which gives about 70% reduction in size. Will be ignored if lossless=True.

• storage_options (dict[str, Any] | None) – Storage options for the cloud storage
backend. Default is None (will assume anonymous)

• overwrite (bool) – Toggle for overwriting existing store

• grid_overrides (dict | None) – Option to add grid overrides. See examples.

Raises

• GridTraceCountError – Raised if grid won’t hold all traces in the SEG-Y file.

• ValueError – If length of chunk sizes don’t match number of dimensions.

• NotImplementedError – If can’t determine chunking automatically for 4D+.

Return type
None

Examples

If we are working locally and ingesting a 3D post-stack seismic file, we can use the following example. This will
ingest with default chunks of 128 x 128 x 128.

>>> from mdio import segy_to_mdio
>>>
>>>
>>> segy_to_mdio(
... segy_path="prefix1/file.segy",
... mdio_path_or_buffer="prefix2/file.mdio",
... index_bytes=(189, 193),
... index_names=("inline", "crossline")
...)

If we are on Amazon Web Services, we can do it like below. The protocol before the URL can be s3 for AWS,
gcs for Google Cloud, and abfs for Microsoft Azure. In this example we also change the chunk size as a demon-
stration.

54 Chapter 7. Credits

MDIO

>>> segy_to_mdio(
... segy_path="prefix/file.segy",
... mdio_path_or_buffer="s3://bucket/file.mdio",
... index_bytes=(189, 193),
... index_names=("inline", "crossline"),
... chunksize=(64, 64, 512),
...)

Another example of loading a 4D seismic such as 3D seismic pre-stack gathers is below. This will allow us to
extract offset planes efficiently or run things in a local neighborhood very efficiently.

>>> segy_to_mdio(
... segy_path="prefix/file.segy",
... mdio_path_or_buffer="s3://bucket/file.mdio",
... index_bytes=(189, 193, 37),
... index_names=("inline", "crossline", "offset"),
... chunksize=(16, 16, 16, 512),
...)

We can override the dataset grid by the grid_overrides parameter. This allows us to ingest files that don’t conform
to the true geometry of the seismic acquisition.

For example if we are ingesting 3D seismic shots that don’t have a cable number and channel numbers are
sequential (i.e. each cable doesn’t start with channel number 1; we can tell MDIO to ingest this with the correct
geometry by calculating cable numbers and wrapped channel numbers. Note the missing byte location and word
length for the “cable” index.

>>> segy_to_mdio(
... segy_path="prefix/shot_file.segy",
... mdio_path_or_buffer="s3://bucket/shot_file.mdio",
... index_bytes=(17, None, 13),
... index_lengths=(4, None, 4),
... index_names=("shot", "cable", "channel"),
... chunksize=(8, 2, 128, 1024),
... grid_overrides={
... "ChannelWrap": True, "ChannelsPerCable": 800,
... "CalculateCable": True
... },
...)

If we do have cable numbers in the headers, but channels are still sequential (aka. unwrapped), we can still ingest
it like this.

>>> segy_to_mdio(
... segy_path="prefix/shot_file.segy",
... mdio_path_or_buffer="s3://bucket/shot_file.mdio",
... index_bytes=(17, 137, 13),
... index_lengths=(4, 2, 4),
... index_names=("shot_point", "cable", "channel"),
... chunksize=(8, 2, 128, 1024),
... grid_overrides={"ChannelWrap": True, "ChannelsPerCable": 800},
...)

For shot gathers with channel numbers and wrapped channels, no grid overrides are necessary.

7.6. Reference 55

MDIO

In cases where the user does not know if the input has unwrapped channels but desires to store with wrapped
channel index use: >>> grid_overrides={“AutoChannelWrap”: True,

“AutoChannelTraceQC”: 1000000}

For ingestion of pre-stack streamer data where the user needs to access/index common-channel gathers (single
gun) then the following strategy can be used to densely ingest while indexing on gun number:

>>> segy_to_mdio(
... segy_path="prefix/shot_file.segy",
... mdio_path_or_buffer="s3://bucket/shot_file.mdio",
... index_bytes=(133, 171, 17, 137, 13),
... index_lengths=(2, 2, 4, 2, 4),
... index_names=("shot_line", "gun", "shot_point", "cable", "channel"),
... chunksize=(1, 1, 8, 1, 128, 1024),
... grid_overrides={
... "AutoShotWrap": True,
... "AutoChannelWrap": True,
... "AutoChannelTraceQC": 1000000
... },
...)

For AutoShotWrap and AutoChannelWrap to work, the user must provide “shot_line”, “gun”, “shot_point”,
“cable”, “channel”. For improved common-channel performance consider modifying the chunksize to be (1,
1, 32, 1, 32, 2048) for good common-shot and common-channel performance or (1, 1, 128, 1, 1, 2048) for
common-channel performance.

For cases with no well-defined trace header for indexing a NonBinned grid override is provided.This creates the
index and attributes an incrementing integer to the trace for the index based on first in first out. For example
a CDP and Offset keyed file might have a header for offset as real world offset which would result in a very
sparse populated index. Instead, the following override will create a new index from 1 to N, where N is the
number of offsets within a CDP ensemble. The index to be auto generated is called “trace”. Note the required
“chunksize” parameter in the grid override. This is due to the non-binned ensemble chunksize is irrelevant to
the index dimension chunksizes and has to be specified in the grid override itself. Note the lack of offset, only
indexing CDP, providing CDP header type, and chunksize for only CDP and Sample dimension. The chunksize
for non-binned dimension is in the grid overrides as described above. The below configuration will yield 1MB
chunks:

>>> segy_to_mdio(
... segy_path="prefix/cdp_offset_file.segy",
... mdio_path_or_buffer="s3://bucket/cdp_offset_file.mdio",
... index_bytes=(21,),
... index_types=("int32",),
... index_names=("cdp",),
... chunksize=(4, 1024),
... grid_overrides={"NonBinned": True, "chunksize": 64},
...)

A more complicated case where you may have a 5D dataset that is not binned in Offset and Azimuth directions
can be ingested like below. However, the Offset and Azimuth dimensions will be combined to “trace” dimension.
The below configuration will yield 1MB chunks.

>>> segy_to_mdio(
... segy_path="prefix/cdp_offset_file.segy",
... mdio_path_or_buffer="s3://bucket/cdp_offset_file.mdio",

(continues on next page)

56 Chapter 7. Credits

MDIO

(continued from previous page)

... index_bytes=(189, 193),

... index_types=("int32", "int32"),

... index_names=("inline", "crossline"),

... chunksize=(4, 4, 1024),

... grid_overrides={"NonBinned": True, "chunksize": 64},

...)

For dataset with expected duplicate traces we have the following parameterization. This will use the same logic
as NonBinned with a fixed chunksize of 1. The other keys are still important. The below example allows multiple
traces per receiver (i.e. reshoot).

>>> segy_to_mdio(
... segy_path="prefix/cdp_offset_file.segy",
... mdio_path_or_buffer="s3://bucket/cdp_offset_file.mdio",
... index_bytes=(9, 213, 13),
... index_types=("int32", "int16", "int32"),
... index_names=("shot", "cable", "chan"),
... chunksize=(8, 2, 256, 512),
... grid_overrides={"HasDuplicates": True},
...)

Conversion from to MDIO various other formats.

mdio.converters.mdio.mdio_to_segy(mdio_path_or_buffer, output_segy_path, endian='big',
access_pattern='012', out_sample_format='ibm32',
storage_options=None, new_chunks=None, selection_mask=None,
client=None)

Convert MDIO file to SEG-Y format.

MDIO allows exporting multidimensional seismic data back to the flattened seismic format SEG-Y, to be used
in data transmission.

The input headers are preserved as is, and will be transferred to the output file.

The user has control over the endianness, and the floating point data type. However, by default we export as
Big-Endian IBM float, per the SEG-Y format’s default.

The input MDIO can be local or cloud based. However, the output SEG-Y will be generated locally.

A selection_mask can be provided (in the shape of the spatial grid) to export a subset of the seismic data.

Parameters

• mdio_path_or_buffer (str) – Input path where the MDIO is located

• output_segy_path (str) – Path to the output SEG-Y file

• endian (str) – Endianness of the input SEG-Y. Rev.2 allows little endian. Default is ‘big’.

• access_pattern (str) – This specificies the chunk access pattern. Underlying zarr.Array
must exist. Examples: ‘012’, ‘01’

• out_sample_format (str) – Output sample format. Currently support: {‘ibm32’,
‘float32’}. Default is ‘ibm32’.

• storage_options (dict) – Storage options for the cloud storage backend. Default: None
(will assume anonymous access)

• new_chunks (tuple[int, ...]) – Set manual chunksize. For development purposes only.

7.6. Reference 57

MDIO

• selection_mask (np.ndarray) – Array that lists the subset of traces

• client (distributed.Client) – Dask client. If None we will use local threaded sched-
uler. If auto is used we will create multiple processes (with 8 threads each).

Raises

• ImportError – if distributed package isn’t installed but requested.

• ValueError – if cut mask is empty, i.e. no traces will be written.

Return type
None

Examples

To export an existing local MDIO file to SEG-Y we use the code snippet below. This will export the full MDIO
(without padding) to SEG-Y format using IBM floats and big-endian byte order.

>>> from mdio import mdio_to_segy
>>>
>>>
>>> mdio_to_segy(
... mdio_path_or_buffer="prefix2/file.mdio",
... output_segy_path="prefix/file.segy",
...)

If we want to export this as an IEEE big-endian, using a selection mask, we would run:

>>> mdio_to_segy(
... mdio_path_or_buffer="prefix2/file.mdio",
... output_segy_path="prefix/file.segy",
... selection_mask=boolean_mask,
... out_sample_format="float32",
...)

7.6.3 Core Functionality

Dimensions

Dimension (grid) abstraction and serializers.

class mdio.core.dimension.Dimension(coords, name)
Dimension class.

Dimension has a name and coordinates associated with it. The Dimension coordinates can only be a vector.

Parameters

• coords (list | tuple | ndarray[Any, dtype[_ScalarType_co]] | range) –
Vector of coordinates.

• name (str) – Name of the dimension.

classmethod deserialize(stream, stream_format)
Deserialize buffer into Dimension.

Parameters

58 Chapter 7. Credits

MDIO

• stream (str) –

• stream_format (str) –

Return type
Dimension

classmethod from_dict(other)
Make dimension from dictionary.

Parameters
other (dict[str, Any]) –

Return type
Dimension

max()

Get maximum value of dimension.

Return type
NDArray[np.float]

min()

Get minimum value of dimension.

Return type
NDArray[np.float]

serialize(stream_format)
Serialize the dimension into buffer.

Parameters
stream_format (str) –

Return type
str

to_dict()

Convert dimension to dictionary.

Return type
dict[str, Any]

property size: int

Size of the dimension.

class mdio.core.dimension.DimensionSerializer(stream_format)
Serializer implementation for Dimension.

Initialize serializer.

Parameters
stream_format (str) – Stream format. Must be in {“JSON”, “YAML”}.

deserialize(stream)

Deserialize buffer into Dimension.

Parameters
stream (str) –

Return type
Dimension

7.6. Reference 59

MDIO

serialize(dimension)
Serialize Dimension into buffer.

Parameters
dimension (Dimension) –

Return type
str

Data I/O

(De)serialization factory design pattern.

Current support for JSON and YAML.

class mdio.core.serialization.Serializer(stream_format)
Serializer base class.

Here we define the interface for any serializer implementation.

Parameters
stream_format (str) – Format of the stream for serialization.

Initialize serializer.

Parameters
stream_format (str) – Stream format. Must be in {“JSON”, “YAML”}.

abstract deserialize(stream)

Abstract method for deserialize.

Parameters
stream (str) –

Return type
dict

abstract serialize(payload)
Abstract method for serialize.

Parameters
payload (dict) –

Return type
str

static validate_payload(payload, signature)
Validate if required keys exist in the payload for a function signature.

Parameters

• payload (dict) –

• signature (Signature) –

Return type
dict

mdio.core.serialization.get_deserializer(stream_format)
Get deserializer based on format.

60 Chapter 7. Credits

MDIO

Parameters
stream_format (str) –

Return type
Callable

mdio.core.serialization.get_serializer(stream_format)
Get serializer based on format.

Parameters
stream_format (str) –

Return type
Callable

7.6.4 Convenience Functions

Convenience APIs for working with MDIO files.

mdio.api.convenience.copy_mdio(source, dest_path_or_buffer, excludes='', includes='',
storage_options=None, overwrite=False)

Copy MDIO file.

Can also copy with empty data to be filled later. See excludes and includes parameters.

More documentation about excludes and includes can be found in Zarr’s documentation in
zarr.convenience.copy_store.

Parameters

• source (MDIOReader) – MDIO reader or accessor instance. Data will be copied from here

• dest_path_or_buffer (str) – Destination path. Could be any FSSpec mapping.

• excludes (str) – Data to exclude during copy. i.e. chunked_012. The raw data won’t be
copied, but it will create an empty array to be filled. If left blank, it will copy everything.

• includes (str) – Data to include during copy. i.e. trace_headers. If this is not specified,
and certain data is excluded, it will not copy headers. If you want to preserve headers, specify
trace_headers. If left blank, it will copy everything except specified in excludes parameter.

• storage_options (dict | None) – Storage options for the cloud storage backend. De-
fault is None (will assume anonymous).

• overwrite (bool) – Overwrite destination or not.

Return type
None

mdio.api.convenience.rechunk(source, chunks, suffix, compressor=None, overwrite=False)
Rechunk MDIO file adding a new variable.

Parameters

• source (MDIOAccessor) – MDIO accessor instance. Data will be copied from here.

• chunks (tuple[int, ...]) – Tuple containing chunk sizes for new rechunked array.

• suffix (str) – Suffix to append to new rechunked array.

• compressor (Codec | None) – Data compressor to use, optional. Default is Blosc(‘zstd’).

• overwrite (bool) – Overwrite destination or not.

7.6. Reference 61

MDIO

Return type
None

Examples

To rechunk a single variable we can do this

>>> accessor = MDIOAccessor(...)
>>> rechunk(accessor, (1, 1024, 1024), suffix="fast_il")

mdio.api.convenience.rechunk_batch(source, chunks_list, suffix_list, compressor=None, overwrite=False)
Rechunk MDIO file to multiple variables, reading it once.

Parameters

• source (MDIOAccessor) – MDIO accessor instance. Data will be copied from here.

• chunks_list (list[tuple[int, ...]]) – List of tuples containing new chunk sizes.

• suffix_list (list[str]) – List of suffixes to append to new chunk sizes.

• compressor (Codec | None) – Data compressor to use, optional. Default is Blosc(‘zstd’).

• overwrite (bool) – Overwrite destination or not.

Return type
None

Examples

To rechunk multiple variables we can do things like:

>>> accessor = MDIOAccessor(...)
>>> rechunk_batch(
>>> accessor,
>>> chunks_list=[(1, 1024, 1024), (1024, 1, 1024), (1024, 1024, 1)],
>>> suffix_list=["fast_il", "fast_xl", "fast_z"],
>>>)

7.7 Contributor Guide

Thank you for your interest in improving this project. This project is open-source under the Apache 2.0 license and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

• Source Code

• Documentation

• Issue Tracker

• Code of Conduct

62 Chapter 7. Credits

https://opensource.org/licenses/Apache-2.0
https://github.com/TGSAI/mdio-python
https://mdio-python.readthedocs.io/
https://github.com/TGSAI/mdio-python/issues

MDIO

7.7.1 How to report a bug

Report bugs on the Issue Tracker.

When filing an issue, make sure to answer these questions:

• Which operating system and Python version are you using?

• Which version of this project are you using?

• What did you do?

• What did you expect to see?

• What did you see instead?

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

7.7.2 How to request a feature

Request features on the Issue Tracker.

7.7.3 How to set up your development environment

You need Python 3.9+ and the following tools:

• Poetry

• Nox

• nox-poetry

Another alternative is to use a Development Container has been setup to provide an environment with the required
dependencies. This facilitates development on different systems.

This should seamlessly enable development for users of VS Code on systems with docker installed.

Known Issues:

• git config --global --add safe.directory $(pwd) might be needed inside the container.

7.7.4 How to Install and Run MDIO

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session, or the command-line interface:

$ poetry run python
$ poetry run mdio

7.7. Contributor Guide 63

https://github.com/TGSAI/mdio-python/issues
https://github.com/TGSAI/mdio-python/issues
https://python-poetry.org/
https://nox.thea.codes/
https://nox-poetry.readthedocs.io/
https://containers.dev/
https://code.visualstudio.com/docs/devcontainers/containers/

MDIO

7.7.5 How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session. For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory, and are written using the pytest testing framework.

7.7.6 How to submit changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

• The Nox test suite must pass without errors and warnings.

• Include unit tests. This project maintains 100% code coverage.

• If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by
running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything. This will allow a chance to talk it over with the
owners and validate your approach.

7.8 Contributor Covenant Code of Conduct

7.8.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste,
color, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

64 Chapter 7. Credits

https://pytest.readthedocs.io/
https://github.com/TGSAI/mdio-python/pulls

MDIO

7.8.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

7.8.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

7.8.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

7.8.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders re-
sponsible for enforcement at opensource@tgs.com. All complaints will be reviewed and investigated promptly and
fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

7.8. Contributor Covenant Code of Conduct 65

mailto:opensource@tgs.com

MDIO

7.8.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

7.8.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.
contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

66 Chapter 7. Credits

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

MDIO

7.9 License

Copyright 2022 TGS

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

--

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

(continues on next page)

7.9. License 67

MDIO

(continued from previous page)

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate

(continues on next page)

68 Chapter 7. Credits

MDIO

(continued from previous page)

as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade

(continues on next page)

7.9. License 69

MDIO

(continued from previous page)

names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

70 Chapter 7. Credits

PYTHON MODULE INDEX

m
mdio.api.accessor, 48
mdio.api.convenience, 61
mdio.converters.mdio, 57
mdio.converters.segy, 53
mdio.core.dimension, 58
mdio.core.serialization, 60

71

MDIO

72 Python Module Index

INDEX

Symbols
--access-pattern

mdio-copy command line option, 42
mdio-info command line option, 43
mdio-segy-export command line option, 44

--chunk-size
mdio-segy-import command line option, 47

--compression-tolerance
mdio-segy-import command line option, 47

--endian
mdio-segy-export command line option, 45
mdio-segy-import command line option, 47

--excludes
mdio-copy command line option, 42

--grid-overrides
mdio-segy-import command line option, 47

--header-locations
mdio-segy-import command line option, 47

--header-names
mdio-segy-import command line option, 47

--header-types
mdio-segy-import command line option, 47

--includes
mdio-copy command line option, 42

--lossless
mdio-segy-import command line option, 47

--output-format
mdio-info command line option, 43

--overwrite
mdio-copy command line option, 42
mdio-segy-import command line option, 47

--segy-format
mdio-segy-export command line option, 44

--storage-options
mdio-copy command line option, 42
mdio-segy-export command line option, 44
mdio-segy-import command line option, 47

--version
mdio command line option, 42

-access
mdio-copy command line option, 42
mdio-info command line option, 43

mdio-segy-export command line option, 44
-chunks

mdio-segy-import command line option, 47
-endian

mdio-segy-export command line option, 45
mdio-segy-import command line option, 47

-exc
mdio-copy command line option, 42

-format
mdio-info command line option, 43
mdio-segy-export command line option, 44

-grid-overrides
mdio-segy-import command line option, 47

-inc
mdio-copy command line option, 42

-loc
mdio-segy-import command line option, 47

-lossless
mdio-segy-import command line option, 47

-names
mdio-segy-import command line option, 47

-overwrite
mdio-copy command line option, 42
mdio-segy-import command line option, 47

-storage
mdio-copy command line option, 42
mdio-segy-export command line option, 44
mdio-segy-import command line option, 47

-tolerance
mdio-segy-import command line option, 47

-types
mdio-segy-import command line option, 47

B
binary_header (mdio.api.accessor.MDIOAccessor

property), 51

C
chunks (mdio.api.accessor.MDIOAccessor property), 51
coord_to_index() (mdio.api.accessor.MDIOAccessor

method), 50
copy() (mdio.api.accessor.MDIOAccessor method), 51

73

MDIO

copy_mdio() (in module mdio.api.convenience), 61

D
deserialize() (mdio.core.dimension.Dimension class

method), 58
deserialize() (mdio.core.dimension.DimensionSerializer

method), 59
deserialize() (mdio.core.serialization.Serializer

method), 60
Dimension (class in mdio.core.dimension), 58
DimensionSerializer (class in mdio.core.dimension),

59

F
from_dict() (mdio.core.dimension.Dimension class

method), 59

G
get_deserializer() (in module

mdio.core.serialization), 60
get_serializer() (in module mdio.core.serialization),

61

L
live_mask (mdio.api.accessor.MDIOAccessor prop-

erty), 51

M
max() (mdio.core.dimension.Dimension method), 59
mdio command line option

--version, 42
mdio.api.accessor

module, 48
mdio.api.convenience

module, 61
mdio.converters.mdio

module, 57
mdio.converters.segy

module, 53
mdio.core.dimension

module, 58
mdio.core.serialization

module, 60
MDIO_FILE

mdio-segy-export command line option, 45
MDIO_PATH

mdio-info command line option, 43
mdio-segy-import command line option, 48

mdio_to_segy() (in module mdio.converters.mdio), 57
mdio-copy command line option

--access-pattern, 42
--excludes, 42
--includes, 42

--overwrite, 42
--storage-options, 42
-access, 42
-exc, 42
-inc, 42
-overwrite, 42
-storage, 42
SOURCE_MDIO_PATH, 42
TARGET_MDIO_PATH, 42

mdio-info command line option
--access-pattern, 43
--output-format, 43
-access, 43
-format, 43
MDIO_PATH, 43

mdio-segy-export command line option
--access-pattern, 44
--endian, 45
--segy-format, 44
--storage-options, 44
-access, 44
-endian, 45
-format, 44
-storage, 44
MDIO_FILE, 45
SEGY_PATH, 45

mdio-segy-import command line option
--chunk-size, 47
--compression-tolerance, 47
--endian, 47
--grid-overrides, 47
--header-locations, 47
--header-names, 47
--header-types, 47
--lossless, 47
--overwrite, 47
--storage-options, 47
-chunks, 47
-endian, 47
-grid-overrides, 47
-loc, 47
-lossless, 47
-names, 47
-overwrite, 47
-storage, 47
-tolerance, 47
-types, 47
MDIO_PATH, 48
SEGY_PATH, 48

MDIOAccessor (class in mdio.api.accessor), 48
MDIOReader (class in mdio.api.accessor), 51
MDIOWriter (class in mdio.api.accessor), 52
min() (mdio.core.dimension.Dimension method), 59
module

74 Index

MDIO

mdio.api.accessor, 48
mdio.api.convenience, 61
mdio.converters.mdio, 57
mdio.converters.segy, 53
mdio.core.dimension, 58
mdio.core.serialization, 60

N
n_dim (mdio.api.accessor.MDIOAccessor property), 51

R
rechunk() (in module mdio.api.convenience), 61
rechunk_batch() (in module mdio.api.convenience), 62

S
SEGY_PATH

mdio-segy-export command line option, 45
mdio-segy-import command line option, 48

segy_to_mdio() (in module mdio.converters.segy), 53
serialize() (mdio.core.dimension.Dimension method),

59
serialize() (mdio.core.dimension.DimensionSerializer

method), 59
serialize() (mdio.core.serialization.Serializer

method), 60
Serializer (class in mdio.core.serialization), 60
shape (mdio.api.accessor.MDIOAccessor property), 51
size (mdio.core.dimension.Dimension property), 59
SOURCE_MDIO_PATH

mdio-copy command line option, 42
stats (mdio.api.accessor.MDIOAccessor property), 51

T
TARGET_MDIO_PATH

mdio-copy command line option, 42
text_header (mdio.api.accessor.MDIOAccessor prop-

erty), 51
to_dict() (mdio.core.dimension.Dimension method),

59
trace_count (mdio.api.accessor.MDIOAccessor prop-

erty), 51

V
validate_payload() (mdio.core.serialization.Serializer

static method), 60

Index 75

	Installing MDIO
	Using MDIO
	Requirements
	Minimal
	Optional

	Contributing to MDIO
	Licensing
	Issues
	Credits
	Install Instructions
	Using pip and virtualenv
	Using conda
	Checking Installation
	Building from Source

	Get Started in 10 Minutes
	Downloading the SEG-Y Dataset
	Ingesting to MDIO Format
	Opening the Ingested MDIO File
	Querying Metadata
	MDIO Grid, Dimensions, and Related Attributes
	Fetching Data and Plotting
	Query Headers
	MDIO to SEG-Y Conversion
	Validate Round-Trip SEG-Y File

	Seismic Data Compression
	Ingestion
	Lossless (Default)
	Lossy Default
	Lossy+ (A Lot of Compression)
	Observe Sizes

	Open Files, and Get Raw Statistics
	Plot Images with Differences
	Calculate Metrics

	Optimizing Access Patterns
	Introduction
	Compression (Lossy)
	Optimizing IL/XL/Z Independently
	Optimizing in Batch

	Usage
	Ingestion and Export
	Cloud Connection Strings
	Amazon Web Services
	Google Cloud Provider
	Microsoft Azure
	Advanced Cloud Features

	CLI Reference
	mdio
	copy
	info
	segy
	export
	import

	Reference
	Readers / Writers
	Data Converters
	Seismic Data

	Core Functionality
	Dimensions
	Data I/O

	Convenience Functions

	Contributor Guide
	How to report a bug
	How to request a feature
	How to set up your development environment
	Known Issues:

	How to Install and Run MDIO
	How to test the project
	How to submit changes

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	License

	Python Module Index
	Index

